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Abstract. Oversubscription planning (OSP) appears in many
real problems where finding a plan achieving all goals is infeasi-
ble. The objective is to find a feasible plan reaching a goal sub-
set while maximizing some measure of utility. In this paper, we
present a new technique to select goals “a priori” for problems in
which a cost bound prevents all the goals from being achieved.
It uses estimations of distances between goals, which are com-
puted using relaxed plans. Using these distances, a search in
the space of subsets of goals is performed, yielding a new set of
goals to plan for. A revised planning problem can be created and
solved, taking into account only the selected goals. We present
experiments in six different domains with good results.

1 Introduction

In classical planning the objective is to find a sequence of actions transforming a
given initial state into a final state in which a conjunctive list of goals is present.
A valid plan is the sequence of actions reaching all goals. Soft goals can be added
to a classical planning problem to account for goals that we wish to achieve but
that we do not enforce. As a result, a planning problem could contain both hard
and soft goals. In real domains there can be several causes making impossible or
useless to reach all soft goals: two or more soft goals could be mutually exclusive,
i.e. cannot be true at the same time; plans achieving all goals could need more
quantity of a certain resource than the available one; goals could be redundant,
so a plan would be valid even achieving just some of them; or some goals could
be not worth enough, as the cost of achieving them would be higher than their
reward. In problems with only soft-goals, a valid plan is any plan achieving any
subset of them, even an empty one. Usually, an utility or penalization is assigned
to each soft goal to compare plans achieving different sets of soft goals.
Oversubscription planning (OSP) is a special type of planning with soft goals,
introduced by [13], and motivated by some real problems at NASA. OSP assumes
it is not possible to achieve all soft goals due to a resource limitation; the rover
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battery power in the original formulation. A simple way to model the limited
resource is as the maximum cost a valid plan can have. The objective is to find a
plan that maximizes the utility while keeping the cost (resource) under a certain
bound. We will call it the cOST-BOUNDED OSP problem to distinguish it from
the more general OSP case, where there can be other causes preventing all the
goals from being achieved (mutually exclusive goals for example). The objective
of OSP CcOST-BOUNDED problems is to find the plan with maximum wtility given
the resource(s) availabilities. The wutility is a function, generally the addition, of
the utilities of the goals reached by a plan.

A close related soft goals problem is the Partial Satisfaction one (PSP) [12,
1,2] included in the International Planning Competition (IPC) 2006 under the
PREFERENCES Track and in the ITPC 2008 under the NET-BENEFIT track. In PSP,
nothing prevents, at least a priori, achieving all goals, but there is a trade-off
between the utility of achieving a goal and the cost of doing so [1]. The most
explored PSP problem is the NET-BENEFIT, which tries to maximize the wtility
— cost metric (actually it assigns a penalization to each not reached goal and
minimizes the cost + penalization). Probably due to the IPC, work on NET-
BENEFIT has been extensive. In contrast, the COST-BOUNDED problem has been
less explored, even though the existence of a limited resource (time, fuel, battery,
storage space, money...) preventing the accomplishment of all goals is present
in a large number of real domains.

The optimal solution for a soft goals problem can be computed by finding a
plan for each of the 2" combinations of the n problem’s goals, and then selecting
the plan with maximum utility. Of course, this is infeasible except for very simple
cases. In practice, three different approaches have been used: a priori selection of
goals, on-the-fly selection, and compilation into a different problem. Goals can
be selected “a priori” to find the potentially best subset to plan for. Later, the
planning step takes into account only the selected goals. In [13], an orienteering
problem (OP) is constructed. A set of propositions, different for each domain,
make up the nodes of the basic OP. For each goal a node is added, inserting
an arc from it to the nodes where it can be achieved. Arcs costs are calculated
using a plan graph. The resulting OP is solved using beam search and the solu-
tion is used to guide a partial-order planner. This is the only approach tailored
for resource-bounded problems found in the literature. The main disadvantage is
that the set of propositions making up a node depends on a threshold that has to
be manually defined for each domain. In [12], relaxed plans are used to estimate
the cost of reaching a goal, but for the NET-BENEFIT problem. For a n — goals
problem, a relaxed plan to each goal is computed to estimate the NET-BENEFIT
of including it in the set of goals. Then, for each goal, a set containing it is
constructed adding goals until the NET-BENEFIT does not increase. On-the-fly
selection of goals approaches do not perform goals selection. Instead, incremental
plans are built, refining the best ones to achieve more utility [4,1]. In general,
these approaches scale worse than the goal selection ones. A soft goals problem
can be modeled as a Markov Decision Process (MDP) [13, 2], obtaining a policy
from which a plan finding the optimal solution can be extracted. However, this
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conversion does not scale well so it has not been reported to be used in practice.
Using integer programming (IP) to find optimal plans for a given parallel plan
length is another possible transformation [2]. The most successful problem trans-
formation [9] compiles away soft goals to create a STRIPS+actions cost problem
with more actions, fluents and hard goals, but no soft goals, which can be solved
by any conventional planner. This compilation, in combination with the winner
of the satisficing track of the IPC 2008 [11], outperforms any participant of the
soft-goals tracks of the two last IPCs [9)].

The technique we propose is a two-step algorithm. In the first step we select
the goals to plan for by using relaxed plans to compute distances among goals.
Distances represent estimated costs of achieving one goal from a state where
another one has been achieved. Using those distances, we perform a search in the
space of subsets of goals for the set that maximizes the utility with the estimated
cost-bound. In the second step, this set is given to a satisficing planner to find
a plan achieving it.

In the following section we will formally define the problem. Next, the two-
step algorithm will be described, and our technique will be compared with pre-
vious work. The paper finishes with conclusions and future work.

2 Problem definition

We will define next the planning problem we are tackling.

Definition 1: A STRIPS planning problem with actions costs and soft goals
is a tuple P = {F, A, I,G,c,u}, where F is a finite set of fluents, A is a finite
set of actions, being each a; € A composed of preconditions establishing when
the action can be applied, and effects, consisting of elements of F being added
or deleted from the current state after a; is applied, I C F' is the initial state,
G C F is the set of goals, ¢ : A~ R{ is a cost function, and u : G — RY is an
utility function.

A solution of the planning problem P is an ordered list of actions IT =
{ag,ay...an},a; € A, which applied to I results in a state where G’ C G is
true (in classical planning, G’ = G). If the final state is forced to achieve some
G"” C G’ then we have a problem with both hard and soft goals. The cost of the
plan [T is defined as C(II) = ), c;y c¢(a;). The objective of a planning problem
with soft goals is usually to maximize the utility of the plan. We will consider
additive utilities, as most work in the field (see [4] for other approximations).

Definition 2: The utility of a solution, II, to the planning problem with soft
goals is U(II) = 3 ccru(gi)-

Definition 3: A COST-BOUNDED problem is a tuple M = {P,Cpaz }, where
P is a planning problem with soft goals as defined above, and Cppar € RY is the
cost bound of the problem.

A solution to the COST-BOUNDED problem is a plan II = {ag, a;...an},a; €
A, which applied to I results in a state where G’ C G is true, and such that
its plan cost satisfies C'(IT) < Cppaz- Given two solutions for the COST-BOUNDED
problem IT; and Is, IT; will be a better solution than [Ty if U(I1y) > U(Ily).
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3 Two-step OSP Algorithm

We perform an a priori selection of goals in two steps: selecting goals and plan-
ning for the selected goals. Algorithm 1 shows the pseudo-code of the process.

Algorithm 1 Two-step algorithm for solving COST-BOUNDED problems.
OSP (P OSP problem ): IT Plan
S + Select-goals(P)
P’ + standard problem (no OSP) from new goals(P, S)
IT + Plan-for-goals(P’)
return I7

Select-goals (P OSP problem ): S Goals set
D <+ Compute distances matrix
S < Select goals(D)

return S

Plan-for-goals (P planning problem ): II plan
repeat
IT + plan(P)
if IT # () then
return 17
else
P + remove lowest utility goal from P
end if
until goals(P) =0
return Fail

3.1 Selecting Goals

In the first step, we generate a matrix of distances between goals. This matrix
has n + 1 rows and n columns, being n the number of goals. The elements of
the first row are the estimations of the cost of reaching each goal from I, as if
each goal were the only goal in the problem. The following rows, one for each
goal, contain the estimations of the cost of achieving the remaining goals from
the state reached when calculating the first row.

Definition 4 (Distance from the initial state to a goal): Let P be a
planning problem and g, € G a goal. We define the distance from I to g, (Ar.)
as the cost of the lowest cost plan, II; reaching g, from I.

The value of Ay, gives an idea about how close a given goal and the initial
state are, i.e. how costly to reach a single goal from the initial state is. Therefore,
it makes it easier to decide whether to include or not this goal in the set of goals
to plan for. In most cases, achieving one goal will change the cost of reaching
others, which is accounted for by means of the following distance between two
goals:



Using the Relaxed Plan Heuristic to Select Goals in OSP 5

Definition 5 (Distance between two goals): Let P be a planning prob-
lem, g. € G a goal, Il the lowest cost plan used to compute Ar,, spx the state
resulting from applying II; to I, and g, € G another goal. The distance from g,
to gy (Asy) is defined as the cost of the lowest cost plan reaching g, from s .

So, in order to compute the distance between two goals, the lowest cost plan
computed in the previous step is applied to the initial state to reach another
state where the first goal is achieved, and then a distance to the second goal is
computed in the same way as before. In general, A, # Ay,.

Both Ay, and A, depend on the calculation of the lowest cost plan with only
one goal. Even if all the other goals are removed, computing this plan is usually
difficult, making the computation of these distances infeasible and discouraging
their use. As an example, we tried to use an optimal planner to compute Ay,
for the propositional Rovers domain. It was only possible to compute it in the
first 22 (out of 40) IPC5 problems.

Instead, an approximation of Ay, (A7,) can be computed using relaxed plans.
For the rest of the paper, we will compute A’ as the cost of the non-optimal
relaxed plan reaching g, from I, in a similar way as Metric-FF does [8]. In order
to compute A;y the relaxed plan extracted to compute A, is applied to I to
reach a state in which g, is true. Obviously, quite often, actions belonging to the
relaxed plan will not be applicable, as some of their preconditions will not be
satisfied. Despite this fact, actions are applied ignoring preconditions and only
taking into account the effects. From this state, the distance to g, is computed,
using again the cost of the non-optimal relaxed plan. A mutex check should be
done before calculating Agy, but as there are no mutex goals in the domains we
have tried, we have not implemented it yet.

Once the distances matrix is generated, we use a beam search algorithm to
find the goal set with higher utility in the space of subsets of goals. The root node
is the empty set. In the first step, the k& goals with higher utility are selected,
being k the beam width. For each of the selected goals g,, we annotate the node
with the corresponding A, and u(g;). In the second step we consider all the
combinations of the previously selected k goals and one of the remaining goals
and annotate the accumulated cost and utility for these two-goals sets. If a set is
composed of g1 and g, the utility will be u(g1)+u(gz) and the cost A7, +A] .
We select the k best sets and so on. Search ends when a set including all the
goals has been found, or, more likely, when it is not possible to add goals to
any of the k best sets without exceeding the cost-bound. In this case, the set
with higher utility is returned as the solution of the search process. We break
ties favoring lower estimated cost. In case of further tie, one is picked arbitrarily.
This algorithm is greedy in the sense that once a goal is selected for inclusion in
a planning set, it is always considered in the same relative order with respect to
the other goals in that set.

Regarding search parameters, we have tried with different beam widths (0.25,
0.5, 1, 5, 10, 50, 100 and 500 times the number of goals) and 5 gives the best
results in most domains, although variations in utilities depending on beam
width do not seem to be very high.
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3.2 Planning for the Selected Goals

Once goals have been selected, we generate a new problem with the goals in the
selected goals set. The new problem is given to a Metric-FF-like planner, CBP [6].
Its performance is comparable to LAMA for many domains and, unlike it, it
allows numeric preconditions, which are present in all COST-BOUNDED domains.

Given that distances (i.e. costs) are estimated, often the list given to the
planner is still oversubscribed. To solve this problem, we try to find a plan
during a given time bound. If no plan is found, the lowest utility goal is removed
and we search for a new plan. This is repeated until a valid plan has been found
or all the goals have been removed. To find a plan, the planner is given the
same time used to calculate distances, with a minimum of 10 seconds, which has
shown experimentally to work well.

3.3 Computational Complexity

For a n-goals problem, we have to extract n non optimal relaxed plans to compute

", which is polynomial in time [7]. Then we apply these relaxed plans to obtain
the new initial states for each goal, which is linear in the number of steps of the
relaxed plans. Next, for each goal g,, we have to create n-1 relaxed plans to
compute A;y. This gives us n + n x (n — 1) relaxed plans, so it is quadratic
in the number of relaxed plans. Comparing with [12], in the worst case, when
low oversubscription, the complexity of their approach in terms of relaxed plans
and goals is n x Z?;ll i ~ n3 relaxed plans. Furthermore, we are always solving
relaxed plans with only one goal while they incrementally construct relaxed
plans with two, three, ...goals. If only a few of the goals can be achieved,
the complexity of their algorithm decreases dramatically, while ours remains
constant. In addition, we have to select the goals. Nodes at the first layer of the
search graph include only one goal. In the second, they have two goals, and so
on. Thus, the maximum depth will be n—1 in case all the goals except one can be
achieved. Given that we have chosen a beam search width of 5n, the complexity
is quadratic in n. In comparison, complexity of [13] OP is exponential on the
number of propositions defining a node, which depends on a manually selected
threshold and varies in each domain.

4 Experimental Results

We have tested our technique in six IPC domains. To create COST-BOUNDED
problems, first we have taken the PREFERENCES or NET-BENEFIT versions, re-
moved the preferences part to make them regular actions cost domains and
solved them using a Metric-FF like satisficing planner. The aim is to have an
upper bound for the plan cost. In domains where no such versions exist we have
used the STRIPS + actions cost version, solving it in the same way. Second,
equivalent problems with a cost bound of 25%, 50% and 75% of the previously
computed cost have been generated. These three values allow to study how well
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our technique performs when there is a high (25%), medium (50%) or low (75%)
oversubscription degree. Domains have been changed by adding a new fluent to
account for the cost bound. For any action increasing the cost of the plan a new
precondition has been added. This precondition prevents the action from being
applied if its cost, plus the current accumulated cost, exceeds the cost bound. For
example, if the cost of a problem solution is 100, three new problems have been
created. These problems have the same initial state and goals than the original
one, but their maximum cost is limited to 25, 50 and 75 respectively. We did
not use the penalizations of the original problems because we were interested
in testing whether different distributions of utilities among goals yield different
results. Instead, we have defined two versions of each problem; in the first one
all the goals have the same utility: u(g;) = 1,Vg; € G. In the second one, the
utility of each goal is a random value between 1 and 10: 1 < u(g;) < 10,Vg; € G.

We have compared our approach, that we will call Distances, with the most
similar current work: an adaptation for COST-BOUNDED problems of Keyder et
al. compilation [9]; Mips-XXL [5], ranked second in the NET-BENEFIT track of
the IPC 2008 (the winner exhausts the memory even with the simpler problems);
SGPlan [3], winner of the PREFERENCES track of the IPC 2006; and a Baseline
planner which greedily selects the goal with higher utility and plans for it. If a
plan is found, the two goals with higher utility are selected and so on. Compiled,
Mips-XXL and SGPlan are tailored for the NET-BENEFIT problem and not for
the COST-BOUNDED one. That means that in the search process they will try
to minimize the penalization for not achieving the soft goals, but in general the
heuristic will go blind with respect to the cost bound. A way to tackle this is
to modify the metric, so the problem is converted into a kind of NET-BENEFIT-
COST-BOUNDED one, i.e. both the total cost and the penalizations have to be
minimized. But a focus has to be put on the penalizations as against the cost;
the planner should not avoid reaching a goal even if its utility is lower than its
cost given that the cost is not higher than the cost bound. As a preliminary
version, we have changed the metric of the compiled problems from (minimize
(+ (penalizations-cost) to (minimize (+ (penalizations-cost)(/ (plan-cost) (cost-
bound)), which slightly improves their performance

Domains tested are Rovers from IPC5, and Driverlog and Depots from IPC3.
Rowvers is a good example of a domain where goals can not be undone once
achieved and there are not strong interactions among goals. Depots has been
chosen because goals can be undone and there are many interactions among
them. In Driverlog, in addition, a significant percentage of the goals are present
at the initial state and the planner must undo them to find a valid plan. We
have also tested Transport, Peg Solitaire and Elevators domains from the IPC
2008 NET-BENEFIT track. Crewplanning has universal quantifiers not supported
by our planner. Openstacks is mainly an optimization domain in which the cost
of a good plan is very low, making it difficult to create different degrees of
oversubscription. And Woodworking’s soft goals are not a single predicate but a
conjunction of them, which is not supported yet by our approximation. For the
experiments we have used a Intel Xeon 3Ghz with 3GB of RAM memory and
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a time bound of 900 seconds. For the Compiled problems, the planner uses the
whole 900 seconds to find and refine the plan. The same applies for Mips-XXL,
which, although being an optimal planner, is able to generate intermediate non-
optimal plans. In contrast, for Baseline, SGPlan and the Distances version, no
plan refining is done; the first found plan is returned.

Table 1 shows the results. Scores for each planner are calculated in a similar
manner as in the IPC: the planner finding the plan with higher utility (Upqq)
gets 1 point. Every other planner scores U/U,,q.. SGPLan has been removed
from the table as it only solves problems in two domains (Peg Solitaire and
Rowvers) and even in these domains the quality is quite poor. The best result for
each domain and oversubscription degree is highlighted in bold.

Baseline Distances Compiled Mips-XXL
Domain 25% 50% 75%| 256% 50% T75%| 25% 50% 75%| 25% 50% 75%
Depotsi (22) 12.9 14.0 14.8/16.6 16.0 16.4| 14.8 14.2 15.8| 14.9 12,5 114
Depotsig(22) 12.7 14.8 14.5/15.9 17.6 16.7| 13.1 13.1 14.9| 14.9 13.0 12.7

Driverlogi (200 | 11.1 12.0 13.3/16.4 17.8 18.1| 159 154 14.8| 13.5 14.1 12.3
Driverlogio 20)| 11.8 12.6 14.3/17.0 18.0 18.9| 16.1 15.7 14.7| 14.0 14.7 13.1
FElevatorsy (30) 8.0 22.0 22.6| 23.5 25.8 28.1/26.0 29.2 28.2| 1.5 0.8 0.8
FElevatorsig (30)| 11.4 19.9 26.5| 22.8 25.4 27.4|26.0 28.7 27.6| 23.7 19.2 13.5
Pegsoly (30) 20.2 19.9 20.4| 24.9 27.8 29.0|28.2 29.6 29.8|/28.2 28.8 27.0
Pegsolip (30) 21.0 21.2 22.2| 27.3 28.8 29.1/29.0 29.7 29.9/29.0 28.6 27.6
Transport: o) | 11.0 14.8 19.9/15.5 18.8 21.7| 13.0 17.3 18.1| 0.0 0.0 0.0
Transporti (so) 7.7 16.5 23.4/15.0 21.4 24.6| 12.6 184 199/ 0.0 0.0 0.0
Roversy (20 10.5 159 17.6| 15.2 16.9 19.2|20.0 19.7 19.0| 16.3 11.6 9.0
Roversip (20 10.6 159 18.3| 14.1 16.9 19.2/20.0 19.7 18.3| 17.8 13.8 11.3

Total 148.8 199.4 227.7|222.7 250.8 268.6|234.6 250.8 250.9|173.6 157.0 138.6

Table 1. Results on quality. Number next to each domain is the number of problems,
i.e. the maximum score a planner can get. High (25%), medium (50%) and low (75%)
oversubscription rates have been considered.

Baseline performs always worse than Distances, except in some domains,
especially with low oversubscription, where it performs closer. In general, IPC
soft goals domains tend to have a low number of goals, most of the times less
than ten. In this case, the greedy approach of Baseline performs close to other
approaches when the cost bound is high. In domains that have problems with a
higher number of goals, like Driverlog or PegSolitaire, the differences are much
bigger. We plan to create more complicated problems to see if this tendency con-
tinues. Distances performs better than Compiled in 20 problem sets and worse
in 16, while Mips-XXL is better only in low oversubscription PegSolitaire. Differ-
ent utility profiles make no significant difference, but degree of oversubscription
does. Distances performs better in low oversubscription domains in 8 out of 12
configurations. In high and medium oversubscription degrees there is a tie; both
approaches behave better in 6 out of 12. In these problems, the low cost-bound
prunes quite quickly the search tree, allowing a more complete exploration by
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the iteratively refining algorithm. As soon as the maximum cost increases, yield-
ing a bigger search space, selection of goals by Distances returns better results.
Again, we expect that in more complicated problems these differences will be
magnified and Distances will outperform Compiled.

Time cannot be easily compared as Compiled and Mips-XXL use the whole
900 seconds to refine the solutions, while the other planners finish as soon as
a valid plan has been found. Table 2 shows the accumulated time needed to
find the best solution for wtil = 1, problems (results for 1 < util < 10 problems
are similar). For Compiled it means time spent to find the last solution within
the 900 seconds limit (so, not necessarily consuming all the time). Mips-XXL
is not included in the comparison as there is no way to know when the partial
solutions are generated. Baseline is usually the fastest one, though in some
domains Distances is better. Compiled is most of the times the slowest one.

Baseline Distances Compiled
Domain 25% 50% 75%|25% 50% 75%|25% 50% 75%
Depots 189 255 2651391 1826 1788|4306 3851 5051

Driverlog 139 203 214| 585 879 799| 436 1951 3593
Elevators 47 253 321) 19 122 185| 22 3005 4638
PegSolitaire| 10 80 122| 910 1525 1766| 224 3266 3401

Rovers 189 207 209 59 145 86| 141 2617 2779
Transport 131 212 274| 195 345 354(1145 3513 2655
Total 706 1209 1405|3160 4842 4978|6273 18202 22118

Table 2. Accumulated total time in seconds to find the best solution.

5 Conclusions and Future Work

In this paper we have presented a method to solve COST-BOUNDED oversub-
scription problems based on the computation of a distance between goals using
relaxed plans. This distance indicates how far two goals are, allowing to search
in the space of subsets of goals to find a subset maximizing utility with an esti-
mated cost lower than a given cost bound. To find plans for this subset we have
used a planner with performance comparable to the winner of the last IPC.

We have evaluated this approach against NET-BENEFIT planners as no other
COST-BOUNDED planner is, to our knowledge, freely available. Problems with
high, medium and low oversubscription have been created by limiting the cost
a plan can have to 25%, 50% and 75% of the estimated total cost. Results show
that our technique offers better quality in problems with low oversubscription
and in domains where the medium number of goals is above ten. In problems with
high or medium oversubscription or with low number of goals, its performance is
comparable with the best technique; Keyder’s et al. compilation. Our technique
is also almost always much faster than the compilation.
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In the future, we plan to implement smarter strategies to apply when the
selected goals set is still oversubscribed, or when the real cost of the found plan
is lower than the maximum cost, allowing thus for more goals to be achieved.
In our current implementation the planner does not take any advantage of the
order in which the goals were selected. We want to explore whether biasing the
planner to follow this order would increase the performance. Some ways to do
that are, for example, to modify the heuristic values of nodes, or to use a goal
agenda as presented in [10].

We plan also to make experiments in other domains and in more complicated
problems, as those of the sequential satisficing track of the IPC. In the current
configuration, for NET-BENEFIT planners (Compiled, SGPlan and Mips-XXL),
the effect of the metric is to take into account the cost of the plan as another goal
(for util=1 problems) or as the lowest utility goal (for 1 < util < 10 problems).
We want to experiment with different metrics to guide the NET-BENEFIT planners
in a different way.
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