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Abstract  Effective planning requires good modeling languages and good algo-
rithms. The Strips language has shaped most of the work in planning
since the early 70’s due to its effective solution of the frame problem and
its support for divide-and-conquer strategies. In recent years, however,
planning strategies not based on divide-and-conquer and work on the-
ories of actions suggest that alternative langnages can make modeling
and planning easier. With this goal in mind, we have developed Func-
tional Strips, a language that adds first-class function symbols to Strips
providing additional flexibility in the codification of planning problems.
This extension is orthogonal and complementary to extensions accom-
modated in other languages such as conditional effects, quantification,
negation, etc. Function symbols, unlike relational symbols, can be
nested so objects need not be referred to by their explicit names and
as a result more efficient encodings can be provided. For example, a
problem like the 8-puzzle can be codified in terms of four actions with
no arguments; Hanoi, can be codified with a number of ground actions
independent of the number of disks; resources and constraints can be
easily represented, etc.

Functional Strips is both an action and a planning language in the
sense that actions are understood declaratively in terms of a state-based
semantics and operationally in terms of efficient updates on state repre-
sentations. In this paper, we present the language, the semantics and a
number of examples, and discuss possible uses in planning and problem
solving.
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1. INTRODUCTION

The Strips language introduced by Fikes and Nilsson in 1971 has
shaped most the work in Planning (FN71). The appeal of Strips can
be explained by two main reasons: first, it provides a compact repre-
sentation of actions that avoids the frame problem, and second, it sup-
ports divide-and-conquer strategies that have been regarded as good for
planning. Strips, however, is limited in several ways, and more recent
work on action representation (Ped89; Rei91; GL93; San94; Sha97) and
planning algorithms (e.g., (KS99; BG99)) suggests that other languages
could facilitate both modeling and computation.

A number of extensions of the basic Strips language, including nega-
tion, conditional effects, state variables, and quantification have been
considered in a number of proposals (e.g., (Wil88; Ped89; McD98b)).
These extensions simplify the modeling task and in certain cases make
plans shorter (Neb98). These planning languages, however, as well as the
closely related action languages developed in the area of reasoning about
change (in particular, (GL93; GKL97)) share with Strips an important
restriction: the symbols that can be used to represent fluents are either
constant or relational symbols (such as on(a, b) or fluid_level), but not
function symbols. Functional symbols are excluded or they are accom-
modated with restrictions (e.g., they cannot appear nested in the head
of action rules). Functional relations, however, are important in plan-
ning, and indeed, the recent PDDL language standard (McD98b) makes
room for terms involving non-boolean fluents, but largely in an ad-hoc
fashion.

The goal of this paper is extend Strips with first-class function sym-
bols, generalizing and making explicit the logic underlying Strips-like
languages.! In particular, we try to clarify the distinction between state
and state representations, two notions that are often collapsed in plan-
ning. States are logical interpretations over the the language providing a
denotation to all constant, function, and relational symbols. States rep-
resentations on the other hand, are encodings of those interpretations
whose form depends on the language. In the case of Strips, states can
be represented by sets of atoms, while in other languages, they can be
represented by sets of literals or suitable assignments. In all cases, the
representations encode interpretations that determine the denotation of
all relevant expressions in the language.

One of the main advantages of a functional language over a purely
relational one is that functions can be nested and thus can refer to objects

1For an earlier logical account of Strips with a different scope, see (Lif86).
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without providing their explicit names. As a result, the number of action
arguments and the number of possible ground actions can be reduced
substantially, something that is crucial in modern planners (BF95; KS99;
BG99). For example, the 8-puzzle can be modeled in Functional Strips
with 4 ground actions only, Hanoi can be modeled with a number of
ground actions that is independent of the number of disks, and so on.
In other problems, like Gripper (McD98a), the new language allows for
entirely different formulations that exploit the high degree of symmetry
in the domain (FL99). In many cases, the representations obtained are as
efficient as the representations used in specialized programs, something
that is necessary, although not sufficient, for planning approaches to be
competitive with specialized methods.

Two additional comments before we proceed. Once function symbols
become ‘first-class citizens’, the number of possible atoms in the lan-
guage becomes infinite. This does not mean that state representations
become infinite as well. Indeed, the representation of states, while dif-
ferent from Strips, remains finite and compact as a consequence of the
assumption that the domain of interpretation is given by a finite set of
objects. At the same time, the computation of the representation of the
next state remains efficient as well.

The second issue is that while functions in Strips help reduce the
number of possible ground actions, they do not and cannot affect the
branching factor of the problem; namely, the number of actions that
are applicable in each state. Still, it’s worth emphasizing that the per-
formance of modern planners including Graphplan, SAT, and heuristic-
based planners (BF95; KS99; BG99) is influenced both by the branching
factor of the problem and the number of possible ground actions. Even
planners that rely on user-supplied control knowledge such as TLPLAN
(BK98), are affected by the number of ground actions as they all must
be tested for applicability in each state. In a Strips encoding of a prob-
lem like Hanoi, there may be up to N3 ground actions, where N is the
number of disks, but at most only 3 of these actions are applicable in
each state. In Functional Strips, the number of ground actions for this
problem can be reduced to 6, a number of actions that is closer to the
branching factor of the problem and can more efficiently be tested at
run time.?

2Models that reduce the number of possible ground actions towards the limit represented
by the branching factor of the problem are likely to be more suitable for learning as well.
Indeed, learning to apply actions that take few arguments is likely to be simpler than than
learning to apply actions that take many arguments. This is true for example in (Kha97),
where general action strategies are learned for general domains expressed in Strips.



The rest of the paper is organized as follows. We review Strips and
State Models (Sect. 2), show how to accommodate functions in Strips
(Sect. 3), and illustrate the resulting language over a number of examples
(Sect. 4). We also illustrate the importance of choosing suitable repre-
sentations by considering the so-called Gripper domain (Section 5). We
then discuss possible uses of Functional Strips in actual planning sys-
tems (Sect. 6), and briefly consider a number of additional extensions
and related work (Sect. 7).

2. STRIPS
2.1 LANGUAGE

The Strips language comprises two parts: a language for describing
the world and a language for describing how the world changes. The
first is called the state language or simply the language, and the second,
is called the operator language. We consider the Strips language as used
currently in planning (e.g., the Strips subset of PDDL (McD98b)), rather
the original version of Strips that is slightly more complex (FN71; Lif86).

The Strips language Lg is made up of two types of symbols: relational
and constant symbols. In the expression on(a,b), on is a relational
symbol of arity 2, and a and b are constant symbols. We refer to the
(finite) sets of relational and constant symbols as R and C respectively.
In the Strips language, there are no functional symbols and the constant
symbols are the only terms. The atoms are defined in a standard way
from the combination p(ti,...,t;) of a relational symbol p and a tuple
of terms t; of the same arity as p. Similarly the Strips formulas are
obtained by closing the set of atoms under the standard propositional
connectives. In Strips, only conjunctions are used and they are identified
with sets of atoms.

A main difference between relational and constant symbols in Strips
is that the former are used to keep track of aspects of the world that
may change as a result of the actions (e.g., on(a, b)), while the latter are
used to refer to objects in the domain (e.g., on(a,b)). More precisely,
actions in Strips affect the denotation of relational symbols but not the
denotation of constant symbols. For this reason, the former are said to
be fluent symbols, and the latter, fized symbols or constants.

The operators are defined over the set of atoms A in Lg. Each op-
erator op has a precondition, add, and delete lists Prec(op), Add(op),
and Del(op) given by sets of atoms. Operators are normally defined
by means of schemas; here we assume that such schemas have been

grounded.
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A Strips planning problem P = (Lg,0g,Zg,Gg) consists of a tuple
where Lg stands for the state language (defined by the constant and
relational symbols), Og is the set of operators defined over the atoms
in Lg, and Zg and Gg are sets of atoms defining the initial and goal
situations.

2.2 STATE MODELS

The meaning of a Strips planning problem (as well as the meaning of
problems expressed in many extensions of Strips) can be given in terms
of state-space models (NS72; Nil80; Pea83). A state model is a tuple
(S, s0,Sq, A,next) where

. S is a finite set of states

. sg € S is the initial state

1

2

3. Sg C S is a non-empty set of goal states

4. A(s) is the set of actions a applicable in state s, and
5

. next is a transition function that maps a state s into a successor
state s, = nezt(a,s) for any action a € A(s)

A solution of a state-state model is a finite sequence of applicable
actions ag, a1, .., a, that maps the initial state s¢ into a goal state s € Sg.
That is, the action sequence ag, a1, .., a, must generate a sequence of
states s;, 1 = 0,...,n + 1, such that s;11 = f(as,si), ai € A(s;), and
sn+1 € Sg. We say that two state spaces are equivalent when they have
the same solutions. Often one is interested in solutions that are optimal
in some sense; e.g., that minimize the number of actions. We’ll say more
about this in Sect. 7.

2.3 STRIPS STATE MODEL
A Strips planning problem P = (Lg,0g,Zs,Gs) is given a precise

meaning by mapping it into the state model S(P) = (S, sg, Sg, A, next)
where

Al. the states s are sets of atoms from Lg

A2. the initial state sg is Zg

A3. the goal states are the states s such that Gg C s

A4. A(s) is the subset of operators op € Og such that Prec(op) C s

A5. the transition function next is such that nezt(a,s) = s+ Add(a) —
Del(a), for a € A(s)
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The solution of the planning problem P is the solution of the state model
S(P); namely, a sequence of applicable actions that maps the initial state
into a goal state in S(P).

For extensions of Strips such as those involving negated literals or
conditional effects, slightly different state models are needed (Neb98).
These different models, however, have something in common: they are
all propositional in the sense that the internal structure of atoms can be
ignored. In particular, different atoms can be substituted by different
propositional symbols, resulting in state models that are equivalent. For
Functional Strips, this is no longer the case as different terms may denote
the same object. For constructing a state-model for Functional Strips, we
will thus have to consider the internal structure of atoms, and hence will
find convenient to distinguish two notions that are collapsed in the model
[A1]-[A5]: the notion of state and the notion of state representation. We
will associate the former with the logical interpretations over the state
language (GL93; San94) and the latter with suitable encodings of them.
For the basic Strips language, states are conveniently represented by a
set of atoms, but for other languages, including Functional Strips, states
are represented in a different way. To make the transition from Strips to
Functional Strips simpler, we will thus first reformulate the state model
[A1]-[A5] making this distinction explicit.

2.4 NON-PROPOSITIONAL STRIPS MODEL

An interpretation s is a mapping that assigns a denotation z® to each
symbol, term, and formula z in the language. In Strips, the symbols
are constant or relational symbols. Constant symbols play the role of
object names, with different names referring to different objects. We
assume a finite set C of such constant symbols n and a finite domain of
interpretation D such that different names denote different objects and
all objects have names. Furthermore, we consider a class of interpreta-
tions in which the denotation of names, as opposed to the denotation
of fluents, is fized. That is, if we write n* to refer to the denotation of
names n € C, we consider only interpretations s for which n®* = n* for
all n € C. We call the denotation function % : C — D that establishes
a 1-to-1 correspondence between names and objects, the representation
function for constants. The choice of this representation function is ar-
bitrary in Strips as they all lead to state models that are equivalent (i.e.,
that have the same solutions).

The denotation p® of relational symbols p of arity k is a subset of D¥.
The denotation of relational symbols, unlike the denotation of constant
symbols, can change as a result of the actions. Relational symbols are



Functional Strips 7

thus fluent symbols, while constant symbols are fized. The distinction
between fluent and fixed symbols is semantic, and one could think of
languages where relational symbols are fixed and constant symbols are
fluents. Languages with fluent ‘constant’ symbols such as level of _fuel
are used in a number of planners (JB94; CT91; Wil88; Koe98; LG95;
PW94) and action languages (San94; GKL97), where they are referred
to as state-variables, resources, or features.

The denotation [p(t)]® of an atom p(t), where p is a relational symbol
in P and t is a tuple of terms of the same arity as p, is true if t* € p*
and false otherwise. In Strips, the finite set of object names n € C are
the only terms, and hence the resulting set of atoms is finite.

The interpretations s that result from a given representation func-
tion for constants can be encoded by the set [s] of atoms p(t) that
they make true. Taking into account the distinction between s and its
representation [s], the model [A1]-[A5] associated to a Strips problem
P=(Ls,05,T35,Gs) can be reformulated as follows:

B1. the states s € S are the logical interpretations over the language
Lg, and they are represented by the set [s] of atoms that they
make true

B2. the initial state sg is the interpretation that makes the atoms in
Ts true and all other atoms false

B3. the goal states s € Sg are the interpretations that make the atoms
in Gg true

B4. the actions a € A(s) are the operators op € Og whose precondi-
tions are true in s

B5. the transition function nexzt maps states s into states s’ = nezt(a, s)
for a € A(s) such that the representation of s’ is [s'] = [s]—Del(a)+
Add(a).

It is simple to show that for any Strips problem the state models [A1]-
[A5] and [B1]-[B5] are equivalent (they possess the same solutions). This
equivalence is independent of the representation function for constants
used. Model [B1]-[B5], however, is more flexible than model [A1]-[A5] as
it can be easily modified to accommodate other languages. For example,
negation can be accommodated by representing states by the literals
they make true ([B1]) and by adjusting the representation of successor
states ([B5]).3 As we will see below, similar modifications are needed to
accommodate functions.

31In addition, the initial state in [B2] has to be fully determined without closed world assump-
tions; see (Neb98).
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3. FUNCTIONAL STRIPS

The language of Functional Strips differs from Strips in the two main
aspects: function symbols are allowed and they can be fluents. These
are small changes but with interesting consequences for modeling and
problem solving.

3.1 MOTIVATION

As an illustration, let us consider the Towers of Hanoi problem. This
is a standard problem in AT (NS72; Nil80; Pea83) that involves a number
of disks of different sizes that have to be moved from one peg to another.
Only disks at the top of a peg can be moved and they can never be placed
on top of smaller disks.

The formulation of this problem in Strips requires relations like on(z, j),
clear(i), and smaller(i, j), and actions like move(i, j, k) with i, j, and k
ranging over the disk names.* If the number of disks is N, this implies
in the order of N3 ground actions. For N = 10, this means 1000 ground
actions. These ground actions can be described very conveniently by
means of schemas or quantification, yet most modern planners including
Graphplan, SAT and heuristic planners (BF95; KS99; BG99) require
the substitution of schemas by their ground instances. This causes a
real computational problem if N is large. Interestingly, the number of
actions that are ever applicable in a state is given by the number of
pegs and not the number of disks. In particular, with 3 pegs, there can
never be more than 3 ground actions applicable in any state. Still, even
planners that rely on user-supplied control knowledge must scan the N3
ground actions in order to identify the ones that are applicable.

The same problem appears in slightly different form in the extensions
of Strips that accommodate conditional effects and quantification such
as ADL (Ped89). In an ADL language, it’s possible to formulate the prob-
lem so that the number of ground actions can be kept small but at the
expense of a large number of ground conditional effects.” For example,
using the relations top(p;,dy) to state that the top disk in peg p; is
dy, and on(dy,d;) to express that disk dy is on disk dj, then the actions
move(p;,p;j) can be defined over pegs so that when top(p;, dy,), top(pj,d),
and on(dy,d,,) are all true, top(p;, dn,), top(p;,dy), and —top(p;,dy,) be-

4This is a slight simplification as the bottom disks are not on top of other disks. This,
however, is not relevant to our discussion.
5The recent ADL planners are based on Graphplan and also replace schemas by their ground

instances; see (GK97; KNHD97; ASW98).
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come true in the successor state. Yet again, there will be N3 ground
conditional effects associated with each action.

The problem with the large number of ground instances in Strips and
ADL formulations is a consequence of the demand that objects be referred
by their unique names. Indeed, once function symbols are allowed as
‘first-class citizens’ and compound terms can be used to name objects,
this problem can be avoided.® Functional Strips is based on this idea and
replaces the relational fluents in Strips with functional fluents. Provided
with fluent terms like top(p;) and top(p;) representing the top disks in
pegs p; and pj, the effects of the action move(p;, p;) can be expressed as
affecting the disks top(p;) and top(p;) directly, without having to appeal
to the explicit names of those disks.

A complete formulation of Towers of Hanoi in Functional Strips is
shown in Fig. 1.1. The most significant change from Strips is the use of
postconditions of the form

f(t):=w
for terms f(t) and w, in place of add and delete lists. A postcondition of
that form says that in the state s, = nexzt(a, s) that results from doing
action a in state s, the denotation f** of fluent f must become such that
the equation
F ) = w’

holds, where t* and w?® refer to the denotations of t and w in the state
s.

The formulation in Fig. 1.1 uses the function loc(dy) to denote the disk
below dj, and size(dy) to encode the size of disk di. A postcondition of
the action move(p;, p;) like loc(top(p;)) := top(p;) therefore says that the
action makes loc(dy) = dj true when dj, = top(p;) and d; = top(p;) are
both true. This follows from the semantics sketched above and explained
below in further detail. Note that the number of ground actions for the
problem depends on the number of pegs but not on the number of disks.

3.2 LANGUAGE

The state language in Functional Strips (FStrips) is a first-order lan-
guage with no quantification, involving constant, function and relational
symbols but no variable symbols.

For simplicity, we assume that all fluent symbols are encoded as func-
tzon symbols. Constant fluent symbols can be encoded as function sym-

61t must be noted that the original formulation of ADI. accommodates function symbols but
not as ‘first-class citizens’; in particular, they cannot appear nested in the head of actions

rules; see (Ped89).
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Domains: Peg: p1,p2,ps ; the pegs
Disk : dy,ds,ds,ds ; the disks
Diskx : Disk,do ; the disks and a dummy bottom disk 0

Fluents: top : Peg — Diskx ; denotes top disk in peg
loc: Disk — Diskx ; denotes disk below given disk
size : Diskx — Integer ; represents disk size

Action: move(pl,p] Peg) ; moves between pegs
Prec: top(pi) # do , size(top(pi)) < size(top(p;))
Post: top(pi) := IOC(top( i) 5 loc(top(pi)) := top(p;) ; top(p;) := top(p:)
Init: loc(dy) = do, loc(dz) = dy, loc(ds) = da, loc(ds) = ds,
)=

top(p1) = da, top(p2) = do, top(ps) = do,
size(dp) = 4, size(dy) = 3, size(dz) = 2, size(ds) = 1, size(ds) =0

Goal: loc(dy) = do, loc(da) = dy, loc(ds) = da, loc(ds) = ds, top(ps) = da

Figure 1.1 Formulation of 3-towers-of-hanoi in Functional Strips

bols of arity 0, while relational fluent symbols can be encoded as function
symbols of the same arity plus equality. This guarantees that any Strips
representation can be easily translated into FStrips, even if FStrips often
provides alternative encodings. For example, atoms in the blocks-world
expressed as on(a,b) can be encoded more conveniently in Functional
Strips as loc(a) = b, where loc is a function symbol that makes explicit
that blocks are at a single location.

As before, we call the non-fluent symbols in the language, the fized
symbols. They include all constant and relational symbols, as well as
the function symbols that are not fluents. As in Strips, we assume that
the denotation z* of fixed symbols z is fized by a representation function
and consider only the interpretations s for which #° = 2*. Among the
fixed symbols we have a finite set C of object names that are assumed to
refer to different objets, and constant, function, and relational symbols
such as ‘3’, ‘47, ‘=" that have a standard interpretation. The denotation
of fized terms t, i.e., terms involving no fluent symbols, does not depend
on the state and is expressed as t*. We call the terms that involve fluent
symbols, fluent terms.

For the representation of states to be compact and finite, the language
of Functional Strips is typed. The formulation of Hanoi, for example,
involves the types Peg, Disk, and Diskx. The use of types is common in
planning languages (McD98b) where they are used to delimit the range
of action schemas. In FStrips, they also define the domains over which
fluents are interpreted. For example the declaration Disk : di,d2,ds,dy
says that the constant symbols d;, i = 1,2,3,4 denote objects d; of
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type Disk and that there are no other Disk objects. Similarly, the
declaration Diskx : Disk,dy says that the Diskx objects are given by
the Disk objects and the object denoted by dj.

The arguments of functional fluents must range over domains that are
finite. Examples of such domains are booleans, finite integer intervals,
and enumerated domains like Peg = {p1,p2,p3}. The representation
function ‘x’ for constants maps the standard symbols ‘=’, ‘+’, ‘3", etc,
into their standard interpretation, and object names like p1, po, etc, into
different integers pj, p5, etc. Under suitable syntactic conditions, it can
be proved that this mapping is irrelevant as long as different names are
mapped into different objects.

3.3 OPERATORS

In FStrips, an operator op is described by the type of its arguments
and two sets: the precondition and the postcondition lists, referred to as
Prec(op) and Post(op). The precondition list is a set of formulas, while
the postcondition list is a set of updates of the form:

flt)=w (1.1)

where f(t) and w are terms of the same type, and f is a fluent symbol.
Updates like (1.1) express how fluent f changes when an action is taken.
Such postcondition says that the denotation f* of f in the successor
state s, = next(a,s) must become such that the following equation is
satisfied:

o) = v (1.2)

For example, an update like h := h + 1 means that h is incremented by
1, while an update like loc(top(p1)) := top(p2) says that loc(dy) = d3
must become true in s, when top(p1) = d4 and top(ps) = d3 are true in
s.

Note that the terms ¢t and w in (1.1) are interpreted in the state s in
which the action a is taken, and affect the denotation of the fluent f in
the next state. Postconditions, thus, do not interact. Also Equation 1.2
says nothing about the persistence of fluents; this is treated below.

3.4 FUNCTIONAL STRIPS STATE MODEL

The state-model for Functional Strips defines the semantics of the
operators and the planning task. The model is similar to the non-
propositional Strips model [B1]-[B5] where states are interpretations
over the language and operators stand for updates on state representa-
tions. The differences arise from the differences in the language.
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3.4.1 States and State Transitions. The states s are interpre-
tations over the language L defined by the the fluents and constants.
Given the representation function of constants, states s can be repre-
sented by the interpretation f* of fluent symbols f only. We refer to the
domain of the function f* denoted by f as D;. This domain is finite
and is independent of the state s.”

Given a state s and an action a applicable in s, the successor state
sq = next(a,s) is defined by the denotation f®: of each fluent symbol f
in s4. This denotation is given by the equation

Fo(v) = { w® if f(t) := w in Post(a) and v = t* w3

f*(v) otherwise

where v ranges over the objects in Dy. This equation extends (1.2) with
the standard assumption of fluent persistence (San94).

3.4.2 State Representation and Updates. Equation 1.3 pro-
vides the declarative semantics of actions in Functional Strips. The
operational semantics is defined in terms of state representations.

A state representation in Functional Strips is a an assignment of values
to a finite number of state variables. For each fluent f denoting functions
with domain D and range Ry, we create a finite set of state variables
flv], one for each v € Dy. A state s is represented by an assignment in
which each state variable f[v] is assigned a value fy[v] in Ry that stands
for f*(v). Thus, the denotation f* of f is encoded by the value of the
finite set of state variables f[v] which are implemented as an array.

The representation of the state s, that follows an action a in the state
s is obtained from (1.3) as

w® if f(t) := w in Post(a) and v = t*

fs[v] otherwise (1.4)

fuli = {
This computation is linear in the number of effects as in Strips. The
overhead comes from the evaluation of the terms ¢t and w in the state s,
but this is negligible in general.

3.4.3 State Variables and Terms. We say that a term f(%),
where f is a fluent symbol and ¢ is a tuple of fixed terms, refers to a
state variable f[v], when ¢ denotes v; i.e., t* = v. When no confusion
arises we also say that f(t) ¢s the state variable. For example, we say

“In general Dy is a tuple of domains of the same arity as f and the arguments taken by f
are tuples as well. The presentation is simplified assuming that the arity of f is 1 but the
generalization is straightforward.
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that the state in the Hanoi problem is represented by the values of the
state variables top(p1), ..., top(ps), loc(dy), ..., loc(dn), and size(dp),
.., size(dy).

A term f(t) where t involves fluent symbols will normally refer to
different state variables in different states. E.g., loc(top(pi1)) refers to
the state variable loc(d;) in states where top(p1) = di and to loc(ds) in
states where top(p1) = do. It’s precisely this treatment of fluent function
symbols as ‘first-class citizens’ that distinguishes Functional Strips from
other planning and action languages that accommodate state-variables

such as (CT91; Wil88; JB94; LG95; PW94; Koe98; San94; GKLIT).

3.4.4 Stating Problems. A planning problem in Functional Strips
is a tuple P = (Lp,Op,Zp,Gr) where L is the language, Op the op-
erators, and Zr and Gr are formulas standing for the initial and goal
situations. The language Lr is defined by declaring the fluents and
their domains, while operators are defined by means of suitable schemas.
In addition, a representation function "’ that maps fixed symbols into
their denotation is assumed. The representation function for standard
symbols like ‘=", ‘+7, 3, etc, is assumed to be provided by the underly-
ing programming language, while the representation function for object
names maps different names into different objects (integers).

The formulas Zr defining the initial situation must define a unique
state that should be easy to compute. For this reason, we assume that
the formulas in Zrp must be of the special form f(t) = w, where f is
fluent symbol and ¢t and w are fized terms (i.e., terms involving no fluent
symbols). The initial state s then is such that f*(t*) = w*.8

3.4.5 State Model. All the ingredients are in place to define the
state model associated with a problem P = (Lp,Op,Zp,Gr) in Func-
tional Strips. The state model is such that

C1. the states s € S are the logical interpretations over the language
Lp, and are represented by assigning a value fs[v] to each state
variable f[v] for each fluent f and value v in Dy

C2. the initial state sg satisfies the equations f(¢t) = w in Zp

C3. the goal states s € Sg are the interpretations that satisfy the goal
formula Gr

C4. the actions a € A(s) are the operators op € Op whose precondi-
tions are true in s

8 A partial characterization of the initial situation gives rise to a slightly different planning
task that is usually referred to as planning with incomplete information. See (SW98; BG00).
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C5. the representation of the next state s, = next(a,s) for a € A(s) is
such that for each fluent symbol f and v € Dy

o] = w® if f(t) :== w in Post(a) and v = t*
salV1 = fs[v] otherwise (persistence)

A number of examples will be used to illustrate the language.

4. EXAMPLES
4.1 BLOCKS

The blocks world domain is a convenient testbed for modeling and
planning. The most common encoding in Strips involves an action
move(z,y, z) for moving a block  from a block y onto a block z, as
well as actions for moving blocks to the table and from the table. In the
presence of N blocks, this encoding leads to three action schemas with
more than N3 ground instances. As with Towers of Hanoi, ADL can
model the problem with a single conditional schema, but the number
of ground conditional effects remains N3. An alternative often used in
planning is to decompose the actions move(z,y, z) into two actions with
two arguments each: unstack(z,y) and stack(y,z). Similar actions are
defined for placing and removing blocks from the table. Such decompo-
sition reduces the number of ground actions to N2 but makes planning
harder by adding more choice points in the search.

In Functional Strips, it is possible to model this problem with N2
ground actions and a single schema (Fig. 1.2). The actions move(z,y)
moves a block x to a location y that can be another block or the table.
The block on which z was located, denoted by loc(z), becomes clear
after the action, but its explicit name is not needed. We use Bool as the
domain given by the boolean terms true and false, and assume functions
analogous to ‘=’, ‘=’ etc. that return boolean terms. Such functions
can be easily defined in the underlying programming language. The
postcondition clear(y) := (y = table), for example, says that y becomes
not clear if y is not the table. We also abbreviate terms of the form
t = true and t = false by t and -t respectively.

4.2 LOGISTICS

Logistics is a more recent benchmark in planning that deals with the
transportations of packages (Vel92; KS96; McD98a). Packages are trans-
ported in trucks among locations in the same city (including airports)
and by planes among airports in different cities. In the Strips formula-
tion one needs schemas for actions like
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Domains : Block : a,b,c,... ; the blocks

Loc : Block,table ; the locations: blocks + table
Fluents: loc : Block — Loc

clear : Loc — Bool
Action: move(z : Block,y : Loc)
Prec: clear(z); clear(y) ; ¢ £y
Post: loc(z) := y;clear(y) := (y = table) ; clear(loc(z)) := true
Init: loc(a) = table; loc(b) = aj; ..., clear(b), clear(table)
Goal: loc(a) = b, loc(b) = table

Figure 1.2 Formulation of Blocks-world in Functional Strips

load(pkg, transpt, loc)
unload(pkg, transpt, loc)
drive_truck(truck,locl,loc2)
fly_plane(plane,locl,loc2)

where transpt refers to trucks and planes. In Functional Strips, the
presence of functional fluents allows for a more concise representation
in which the number of action arguments can be reduced (e.g., unload
requires the package argument only). This encoding is shown in Fig. 1.3.

The function city is defined as a fluent even though it is fixed in
the initial situation and doesn’t change. A straightforward extension
would allow us to declare such symbols as parameters rather than fluents
(actually such extension is supported in the PDDL standard (McD98b)).
We also make use of type predicates like airport?(t) to test if ¢ denotes
an object of type Airport.

4.3 8-PUZZLE

The 8-puzzle is a standard problem in heuristic search (Nil80; Pea83).
In Functional Strips, the description of the problem is very compact due
to the ability to nest fluents and attach user defined functions to symbols
(Fig. 1.4). There are two main fluent symbols: tile : Pos — Tile that
maps each grid position to the tile that occupies the position, and bp
that keeps track of the position of the ‘blank’ tile. In addition, there
are four symbols, u, [, ... that represent functions that map a position
into each one of its four neighboring position (positions outside the grid
are denoted by 0). For example, assuming that the top row positions
are 1, 2 and 3, the second row positions are 4, 5, and 6, and so on, we
must have u(5) = 2, u(2) = 0, etc. This interpretation of the symbols
u, I, ...can be defined extensionally by modeling them as fluents and
enumerating these equations in the initial situation, or intensionally by



Domains: Pkg: o01,...,010

Truck : t1,ta,. .. ta

Plane : p1ypay... P3

City : bos, pgh, lax, ...

Airpt : abos, pgh, alax, ...

Loctn : bosy, bosa, pghi, laxi, ...

Site : Airpt, Loctn ; Transp : Truck, Plane

Thing : Transp, Pkg ; Loc : Transp, Site
Fluents: loc : Thing — Loc

city : Site = Clity

Action: load(pkg : Pkg,target : Transp)

Prec: loc(pkg) = loc(target)

Post: loc(pkg) := target

Action: unload(pkg : Pkg)

Prec: transp?(loc(pkg))

Post: loc(pkg) := loc(loc(pkg))

Action: drive_truck(t : Truck, dest : Site)
Prec: city(loc(t)) = city(dest)

Post: loc(t) := dest

Action: fly_plane(p : Plane,dest : Airprt)
Prec: airport?(loc(p))

Post: loc(p) := dest

Init: city(abos) = bos, city(bosy) = bos, ...,

loc(t1) = abos, loc(tz) = apgh, loc(ts) = laz;,

loc(p1) = abos, loc(p2) = alazx, ...

loc(o1) = bosi, loc(o2) = bosa, loc(os) = pghy
1)

Goal: loc(o1) = pgh, loc(oz) = pgh, loc(os) = alaz, ...

Figure 1.8 Formulation of Logistics in Functional Strips
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Domain: Pos: 1,...
Tile : 0,...
Pos* : Pos,
Fluent: tile : Pos — Tile

b)

9
.8
0

bp: Pos
Fixed: u,l,r,d : Pos = Posx
Action: up
Prec: u(bp) #0
Post: bp := u(bp) ; tile(bp) := tile(u(bp)) ; tile(u(bp)) := tile(bp)
Action: down, left, right, ...
Init: tile(1) = 2, tile(2) = 0, tile(3) =2, ..., tile(9) =5, bp =2
Goal: tile(1) = 1, tile(2) = 2, tile(3) =3, ..., tile(9) = 8

Figure 1.4 Formulation of 8-puzzle in Functional Strips

modeling these symbols as fixed symbols with an interpretation provided
in the underlying language. In such case, a function ©* must be defined
in the underlying language such that u*(z) returns 0 if z < 3 and returns
z— 3 otherwise. Something similar has to be done for the other functions
d*, r*, and [*. The declaration that u, d, r, and [ are fixed symbols
in Fig. 1.4 indicates that their denotation is defined in the underlying
programming language.

In the resulting model, the actions up, left, ..., have no arguments.
Indeed, the number of ground actions matches exactly the branching
factor of the problem. In addition, the resulting state representation is
in close correspondence with the representation used in specialized pro-
grams. It’s worth emphasizing that these are features that are necessary
(although not sufficient) for making planning approaches competitive
with specialized solvers.

5. RESOURCES

The word ‘resources’ in planning and scheduling refers to objects that
can be produced, consumed, or ‘borrowed’ during the execution of plans,
constraining the possible actions (Wil88; CT91; LG95; PW94; EKR96;
Koe98). E.g., driving a car requires and consumes fuel, building a wall
requires and consumes bricks, etc. An implicit assumption when a col-
lection of objects is represented as a resource is that the identity of the
objects in the set does not matter. This is important as actions and
states that would be different if objects were named individually are col-
lapsed. Namely, actions like ‘grabbing brickl’, ‘grabbing brick2’, and so
on, are replaced by the single action ‘grabbing a brick’. Such simplified
representations can have a significant impact on planning (Wil88; CT91).
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Resources are usually represented as real or integer state variables. In
certain cases, such state variables can depend on one or more arguments
(e.g., level_fuel(cary)). Functional Strips, by making function symbols
‘first-class citizens’, allows these and other uses of state-variables. In
particular, state-variables can be nested, allowing for terms like B(loc)
where both symbols loc and B are fluents. We illustrate the uses of such
constructs by considering a variation of the ‘Gripper’ domain used in
the AIPS-98 Planning Competition (McD98a).

‘Gripper’ involves a robot with a number of grippers that can move
between rooms, picking up and dropping balls from its grippers (one
ball per gripper at most). In the competition, this problem proved to
be hard, and three out of the four competing planners solved a few
instances only. The Strips formulation of Gripper involves names for
each ball and each gripper, along with predicates for keeping track of
the status of each one of them (the location of balls, whether a gripper is
free or not, etc). As discussed in (FL99), this representation produces a
number of symmetries that if exploited at run-time can improve planner
performance significantly. Alternatively, these symmetries can often be
exploited at modeling time. For example, if we do not care about the
identity of the individual balls and grippers, balls and grippers can be
modeled as resources. This leads to substantial simplifications in both
the branching factor of the problem and the state representation. The
resource formulation of Gripper in Functional Strips is shown in Fig. 1.5.
While in the Strips formulation, the actions mowve, pick and drop involve
2 or 3 arguments, in the ‘resource’ formulation only the action move
needs an argument. The fluent loc keeps track of the room where the
robot is, B keeps track of the number of balls in each room, and G stands
for the number of grippers. A term like B(loc) thus denotes the number
of balls in the room where the robot is located. The denotation of this
term changes when either the number of balls in the room or the position
of the robot changes. The state representation that results from the
formulation in Fig. 1.5 is once again as economical as the representation
that can be obtained in a specialized program.

6. PLANNING AND PROBLEM SOLVING

In this section we discuss briefly how Functional Strips can be used
in planning and problem solving. We distinguish two cases. In domain-
independent planning, the domain descriptions are assumed to encode
all the knowledge needed to solve the problem, including the dynamics of
the domain and the control knowledge. In specialized problem solving, on
the other hand, domain descriptions encode the dynamics of the domain
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Domain: Room: a, b, c, ... ; the rooms

Fluents: loc: Room ; the room where the robot is
G : Int ; number of grippers
B : Room + Int ; number of balls in each room
H : Int ; number of balls being held

Action: move(dest : Room)

Prec: -

Post: loc := dest

Action: pick

Prec: H < G ; B(loc) >0

Post: H:=H+1 ; B(loc) := B(loc) — 1
Action: drop

Prec: H>0

Post: H:=0 ; B(loc):= B(loc) + H
Init: G=2,H=0,loc=a, B(a) =20, B(b) =0
Goal: B(b) =15

Figure 1.5 Formulation of Gripper in Functional Strips

but the control knowledge can be provided separately (e.g., in the form
of an heuristic function or a set of control rules). We focus first on the
latter case.

6.1 PROBLEM SOLVING WITH
FUNCTIONAL STRIPS

Consider writing a program for solving a problem like the Rubik’s
cube. One option is to write the program in a programming language
such as C. One would then write some routines for modeling the dynam-
ics of the problem and other routines for capturing the control; namely,
which action to try next, when and where to backtrack, etc. This is ac-
tually the most common option for solving combinatorial problems and
it’s the approach taken for example in (Kor98). The advantage of this
approach is that it can be very efficient at run time; the disadvantage,
is that it may be quite inefficient at modeling time. That is, building
a good specialized program takes time, and usually involves a tedious
process of debugging and tuning.

A modeling language such as Functional Strips can be used in this
setting to reduce modeling ttme without incurring in a substantial over-
head at run time. For that, Functional Strips can be used for describing
the dynamics of the domain which can then be automatically compiled
into efficient run-time procedures (i.e., procedures for testing when an
action is applicable in a state and for computing successor states). These
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compiled procedures can take the place of the routines written by hand.
They will impose a minimal overhead if the encoding of the problem is
such that the resulting state representation is in correspondence with the
state representation used by a specialized program. As argued above,
this can often be achieved in Functional Strips but is more difficult to
achieve in Strips or ADL languages where the number of ground actions
often explodes and state representations have often little to do with
specialized representations.

We have actually implemented a tool that accepts descriptions of
problems in Functional Strips and compiles them into state space search
procedures. The heuristic function used by these procedures is supplied
by the user in the form of a C++ routine. This tool can be seen as
a domain-dependent planner in the style of TLPLAN (BK98) but while
in TLPLAN the control knowledge is expressed in a logical language, in
this tool, the control knowledge is expressed in the form of an heuris-
tic function. Recent heuristic search planners like HSP are based on a
similar idea but rather than relying on a user-supplied heuristic func-
tion, they extract the heuristic function automatically from the problem
description. We elaborate on this below.

6.2 PLANNING WITH FUNCTIONAL
STRIPS

HSP is a planner that maps Strips problems into state-space search
problems that are solved with an heuristic extracted from the Strips en-
codings (BG99). For a state s, the heuristic value h(s) that estimates
the distance from s to the goal is obtained by computing the cost of
achieving each atom p from s under some simplifying assumptions. The
value h(s) is then set to the sum of the costs of the atoms p in the
goal. While the heuristic values h(s) are not admissible (they may over-
estimate the true cost to the goal), they can be computed reasonably
fast and are often quite informative (they drive the search in a good
direction). From the results in the recent AIPS Planning Competition
(McD98a), HSP appears competitive with the state of the art Graphplan
and SAT planners (LF99; KNHD97; KS99).

The ideas of HSP can be used in the context of Functional Strips (see
(BLGIT) for related results). The key point is the automatic extraction
of the heuristic from Functional Strips encodings. We have been explor-
ing a number of ways for doing this, but coming up with an efficient im-
plementation that can be competitive with HSP on similar problems has
been difficult. The problem is that the effect of postconditions f(t) := w
in Functional Strips is state dependent when the terms t or w involve
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fluent symbols. An alternative that we are currently exploring for com-
puting the heuristic is to translate this context-dependent updates into
equivalent sets of conditional but contert-independent updates of the
form C — f(¢') := w', where ¢ and w' have no fluent symbols and
C=(t=t)A(w=u").

Approaches that do not involve the extraction of an heuristic func-
tion are also possible. For example, (BC99) maps planning problems
into constraint satisfaction problems that are then solved by domain-
independent methods. This approach may prove suitable for Functional
Strips where the state is represented by a finite set of state variables
taking a finite set of values. However, more empirical work is needed
to evaluate how the different planning approaches can benefit from the
additional facilities in the modeling language.

7. DISCUSSION

The work we have presented is motivated by a perspective in which
planning is general problem solving. As such, planning should offer a gen-
eral language for expressing problems and general algorithms for solving
them. For such an approach to be useful though, the time required to
model problems and find the solutions has to be competitive with the
time required to set up and solve specialized models. The quality of
the solutions has to be competitive as well. This will be possible only
by a suitable combination of general and effective languages and algo-
rithms as shown by the closely related work in the area of Constraint
Programming (HSD92; MS99).

Due to the similarity between Functional Strips, Strips, and the A
action representation language (GL93), the extensions found in ADL
(conditional effects, negation, and quantification (Ped89)) and languages
such as AR (ramifications) (GKL97) can easily be integrated with the
extensions accommodated in Functional Strips. Among the other ex-
tensions that are likely to be necessary in a good modeling language for
planning, we mention the following:

s Constraints. Constraints represented as formulas can be used to
provide implicit action preconditions (e.g., (GKL97)). Namely, the
set A(s) of actions applicable in s will exclude all actions a that
lead to states s, = nezt(a,s) that violate a constraint. Such con-
straints can be used to express capacity constraints (e.g., that the
number of balls being held cannot exceed the number of grippers)
or control knowledge (BK98). With constraints, any Constraint
Satisfaction Problem (CSP) can be expressed as a Planning prob-
lem. The question is how to make those constraints play an active
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role in the search. So far, only approaches based ezclusively on
constraint techniques are able to do that (e.g., (KS99; BC99)). A
combination of constraint-directed and heuristic search techniques
may also prove useful.

m Costs. The state models discussed above can be extended to take
into account action costs. Traditionally, the focus in planning has
been on uniform action costs, however, costs may depend on both
actions and states. For example, a fluent t standing for tzme can
be included so that actions increase t by their time duration. Then,
defining ¢(a, s) as the duration of a in s, i.e., c(a,s) = (t¥ — t*)
where s, = nezt(a,s), a formulation would be obtained in which
optimal plans stand for plans with minimum completion times. In
a different way, optimal parallel plans, such as those computed by
Graphplan and SAT planners, can be defined as well. The issue is
how to plan effectively in such flexible cost structures.

m Data Structures. The state representation of the 8-puzzle is
close to the representation one could find in a specialized pro-
gram. However, the same cannot be said for Towers of Hanoi. In
a specialized program, the state would not be represented by a set
of equalities loc(disk;) = diskj, but by three lists (diskq,disks,...)
one for each peg, meaning that disk; is on disks which is on disks,
etc. Then the action of moving a disk from one peg to another
would be implemented as operations on the heads of these lists.
One way to achieve such efficient representations in FStrips is by al-
lowing Lists as primitive types. Then functions like car, cdr, cons,
etc. defined in the underlying language can be made available in
the planning language. This would allow high-level representa-
tions of Tower of Hanoi and other problems that are as efficient as
specialized representations.

We have developed a tool that supports some of these extensions. The
tool also accommodates probabilistic actions and partial observability;

see (BG98; BG00).
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