The CBP planner

Raquel Fuentetaja
Departamento de Informatica, Universidad Carlos III de Madrid
rfuentet@inf.uc3m.es

Abstract

This short paper provides a high-level description of the plan-
ner CBP (Cost-Based Planner). CBP performs heuristic search
in the state space using several heuristics. On one hand it
uses look-ahead states based on relaxed plans to speed-up
the search; on the other hand the search is also guided us-
ing a numerical heuristic and a selection of actions extracted
from a relaxed planning graph. The relaxed planning graph is
built taking into account action costs. The search algorithm
is a modified Best-First Search (BFS) performing Branch and
Bound (B&B) to improve the last solution found.

Introduction

Usually, in cost-based planning the quality of plans is in-
versely proportional to their cost. Many planners that
have been developed for being able to deal with cost-
based planning use a combination of heuristics together
with a search mechanism, as METRIC-FF (Hoffmann 2003),
SIMPLANNER (Sapena & Onaindia 2004), SAPA (Do
& Kambhampati 2003), sGplan5 (Chen, Hsu, & Wah
2006), LPG-td(quality) (Gerevini, Saetti, & Serina 2004) or
LAMA (Richter, Helmert, & Westphal 2008).

One of the problems of applying heuristic search in cost-
based planning is that existing numerical heuristics are in
general more imprecise than heuristics for classical plan-
ning. The magnitude of the error the heuristic commits can
be much larger since costs of actions can be very different.
Therefore, making numerical estimations using the cost of
actions which are not part of the actual optimal solution can
lead to a great difference between the actual optimal value
and the estimation. For this reason, some additional tech-
nique, apart from a numerical heuristic, is needed to help
the search algorithm. In CBP we combine the use of a nu-
merical heuristic with the idea of look-ahead states (Vidal
2004), both extracted from a relaxed planning graph aware
of cost information. There are multiple ways to implement
the idea of look-ahead states: different methods can be de-
fined to compute relaxed plans and to compute look-ahead
states from relaxed plans. Also different search algorithms
can be used. In CBP we test one such combinations. CBP
has been described before in (Fuentetaja, Borrajo, & Linares
2009).

Copyright (© 2011, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

The Numerical Heuristic in CBP

To compute the numerical heuristic, we build a relaxed plan-
ning graph in increasing levels of cost. The algorithm (de-
tailed in Figure 1) receives the state to be evaluated, s, the
goal set, G, and the relaxed domain actions, AT. Then, it
follows the philosophy of the Dijkstra algorithm: from all
actions whose preconditions have become true in any Re-
laxed Planning Graph (RPG) level before, generate the next
action level by applying those actions whose cumulative cost
is minimum. The minimum cumulative cost of actions in
an action layer 4, is associated with the next propositional
layer (that contains the effects of those actions). This cost
is denoted as cost_limit; 1 (initially cost_limity = 0).
The algorithm maintains an open list of applicable actions
(OpenApp) not previously applied. At each level ¢, all new
applicable actions are included in Open App. Each new ac-
tion in this list includes its cumulative cost, defined as the
cost of executing the action, cost(a), plus the cost of sup-
porting the action, i.e. the cost to achieve the preconditions.
Here the support cost of an action is defined as the cost limit
of the previous propositional layer, cost_limat;, that repre-
sents the cost of the most costly precondition (i.e it is a max
cost propagation process). Actions with minimum cumula-
tive cost at each iteration are extracted from OpenApp and
included in the corresponding action level, A;, i.e. only ac-
tions with minimum cumulative cost are executed. The next
proposition layer P, is defined as usual, including the add
effects of actions in A;. The process finishes with success,
returning a Relaxed Planning Graph (RPG), when all goals
are true in a proposition layer. Otherwise, when Open App
is the empty set, it finishes with failure. In such a case, the
heuristic value of the evaluated state is co.

Once we have a RPG we extract a RP using an algo-
rithm similar to the one applied in METRIC-FF (Hoffmann
2003). Applying the same tie breaking policy in the extrac-
tion procedure, and unifying some details, the RPs we obtain
could be obtained with the basic cost-propagation process of
SAPA with max propagation and co-look-ahead, as described
in (Bryce & Kambhampati 2007). However, the algorithm
to build the RPG in SAPA follows the idea of a breadth-first
search with cost propagation instead of Dijkstra. The main
difference is that our algorithm guarantees the minimum cost
for each proposition at the first propositional level contain-
ing the proposition.

function compute_RPG_hlevel (s, G, A™)
leti = 0; Py = s; OpenApp = 0; cost_limity = 0;
while G € P; do

OpenApp = OpenApp U {a € AT\ .L<J,Aj | pre(a) C Pi}
7<i

forall new action in OpenApp do
cum_cost(a) = cost(a) + cost_limit;

A = {a | a € argmin cum,cost(a)}
a€OpenApp
costlimitiy1 = min
a€OpenApp

Pipi=PF Y add(a)
if Open App —) then return fail
OpenApp = OpenApp \ A;
t=1+1

return P(), A(), Pl, vy Pi—l, AA7;_17 Pz

cum_cost(a)

Figure 1: Algorithm for building the RPG.

Finally, the heuristic value of the evaluated state is com-
puted as the sum of action costs for the actions in the RP.
Since we generate a relaxed plan, we can use the helpful ac-
tions applied in (Hoffmann 2003) to select the most promis-
ing successors in the search. Helpful actions are the applica-
ble actions in the evaluated state that add at least one propo-
sition required by an action of the relaxed plan and generated
by an applicable action in it.

For the 2011 IPC we present two versions of the planner.
The first one computes the RPG as have been described be-
fore in this section. The second one replaces the max cost
propagation process with an additive propagation process,
which involves to compute the cum_cost(a) in the line 5 of
the algorithm in Figure 1 as:

cum_cost(a) = cost(a) + Z cost _Limityeyei(q)
q€pre(a)

where level(q) is the index of the first propositional layer
containing ¢q. Applying the same tie breaking policy in the
extraction procedure this additive version will be equiva-
lent to the cost-propagation process of SAPA with additive
propagation and oo-look-ahead, as described in (Bryce &
Kambhampati 2007) and also to the heuristic i, (Keyder &
Geffner 2008).

Computing Look-ahead States

Look-ahead states are obtained by successively applying the
actions in the RP. There are several heuristic criteria we ap-
ply to obtain a good look-ahead state. Some of these con-
siderations have been adopted from Vidal’s work in the clas-
sical planning case (Vidal 2004), as: (1) we first build the
RP ignoring all actions deleting top level goals. Relaxed ac-
tions have no deletes. So, when an action in the RP deletes
a top-level goal, probably there will not be another posterior
action in the RP for generating it. In this case, the heuristic
value will be probably a bad estimate; and (2) we gener-
ate the look-ahead state using as many actions as possible
from the RP. This allows to boost the search as much as
possible. We do not use other techniques applied in clas-
sical planning as the method to replace one RP action with

another domain action, when no more RP actions can be ap-
plied (Vidal 2004). Initially, we wanted to test whether the
search algorithm itself is able to repair RPs through search.

Determining the best order to execute the actions in the
RP is not an easy task. One can apply the actions in the
same order they appear in the RP. However, the RP comes
from a graph built considering that actions are applicable in
parallel and they have no deletes. So, following the order in
the RP can generate plans with bad quality. The reason is
that they may have many useless actions: actions applied to
achieve facts other actions delete. We have the intuition that
delaying the application of actions as much as possible (un-
til the moment their effects are required) can alleviate this
problem. So, we follow a heuristic procedure to give prior-
ity to the actions of the RP whose effects are required before
(they are subgoals in lower layers).! To do this, during the
extraction process, each action selected to be in the RP is
assigned a value we call level-required. In the general case,
this value is exactly the minimum layer index minus one of
all the selected actions for which the subgoal is a precondi-
tion.

The RPGs built propagating costs differs from the RPGs
built for classical planning. One of the differences is that
in the former we can have a sequence of actions to achieve
a fact that in the classical case can be generated using just
one action. The reason is that the total cost of applying the
sequence of actions is lower than the cost of using only one
action. In such a case, all the intermediate facts in the se-
quence are not really necessary for the task. They only ap-
pear for cost-related reasons. The only necessary fact is the
last one of the sequence. In this case, the way of computing
the level-required differs from the general case: we assign
the same level-required to all actions of the sequence, that
is the level-required of the action that generate the last (and
necessary) fact. The justification of this decision is that once
the actions have been selected to be in the RP we want to ex-
ecute as more actions as possible of the RP, so we have to
attend to causality reasons and not to cost-related reasons.

The level-required values provide us a partial order for the
actions in the RP. We generate the look-ahead state execut-
ing first the actions with lower level-required. In case of ties
we follow the order of the RP.

The Figure 2 shows a high-level algorithm describing
the whole process for computing the look-ahead state given
the source state and the relaxed plan (RP). The variables
min_order and maz_order represent the minimum and
maximum level-required for the actions in the RP respec-
tively. Initially, all the actions in the RP are marked as no
executed, and the variable current_order is set to the mini-
mum level required. The for sentence covers the relaxed
plan executing the actions applicable in the current state and
not yet executed, whose level required equals the current or-
der. The execution of one action implies to update the cur-
rent state and to initialize the current order to the minimum
level required. After covering the relaxed plan, if no new ac-

!The heuristic procedure described here slightly differs from
the one described in (Fuentetaja, Borrajo, & Linares 2009).

function obtain_lookahead_state(state, RP)
let min_order = minimum_level_required(RP)
let max_order = maximum_level_required(RP)
let executed|[a] = FALSE,Va € RP
let current_order = min_order
let current_state = state
while current_order <= maz_orden do
new_action_applied = FALSE
forall « € RP do
if not executed[a] A applicable(a, current_state) A
level required(a) = current_order then
new_state = apply(a, current_state)
ezecutedla] = TRUE
new_action_applied = TRUE
current_state = new_state
current_order = min_ordern
if not new_action_applied then
current_order = current_order + 1
if current_state # state
return current_state
else
return fail

Figure 2: High-level algorithm for computing the look-
ahead state.

tion has been executed, the current order is increased by one.
This process is repeated until the current order is higher than
the maximum level required (while sentence). Finally the
algorithm returns the last state achieved (i.e. the look-ahead
state).

The Search Algorithm

The search algorithm we employ is a weighted-BFS with
evaluation function f(n) = g(n) + w - h(n), modified in
the following aspects: first, the algorithm performs a Branch
and Bound search. Instead of stopping when the first solu-
tion is found, it attempts to improve this solution: the cost
of the last solution plan found is used as a bound such that
all states whose g-value is higher than this cost bound are
pruned. As the heuristic is non-admissible we prune by g-
values to preserve completeness; second, the algorithm uses
two lists: the open list, and the secondary list (the sec-non-
ha list). Nodes are evaluated when included in open, and
each node saves its relaxed plan. Relaxed plans are first built
ignoring all actions deleting top-level goals (when this pro-
duces an oo heuristic value, the node is re-evaluated consid-
ering all actions). When a node is extracted from open, all
look-ahead states that can be generated successively starting
from the node are included in open. Then, its helpful succes-
sors are also included in open, and its non-helpful successors
in the sec-non-ha list. When after doing this, the open list is
empty, all nodes in sec-non-ha are included in open. The al-
gorithm finishes when open is empty. Figure 3 shows a high-
level description of the search algorithm (BB-LBFS, Branch
and Bound Look-ahead Best First Search). For the sake of
simplicity the algorithm does not include the repeated states
prune and the cost_bound prune for the Branch and Bound.
Repeated states prune is performed pruning states with the
same facts and higher g-values.

function BB-LBFS ()
let cost_bound = oo; plans = 0; open = I; sec_non_ha =
while open # 0 do
node <— pop-best_node(open)
if goal_state(node) then /* solution found */
plans < plans U {node.plan}
cost_bound = cost(node.plan)
else
lookahead = compute_lookahead(node)
while lookahead do
open < open U {lookahead}
if goal_state(lookahead) then
plans <+ plans U {lookahead.plan}
cost_bound = cost(lookahead.plan)
lookahead = compute_lookahead (lookahead)
open <— open U helpful_successors(node)
sec.non_ha <+ sec_non_ha U non_helpful_successors(node)
if open = 0 do
open < open U sec_non_ha
sec.non_ha =10
return plans

Figure 3: High-level BB-LBFS algorithm.

Summary

This paper described the main parts of the CBP planner: (1)
the computation of the relaxed planning graph to obtain a
numerical heuristic and the helpful actions; (2) the genera-
tion of lookahead states based on the same relaxed planning
graphs, and (3) the search algorithm. As aforementioned,
the relaxed planning graphs are built making use of action
costs. The search algorithm is a best first algorithm modi-
fied to give priority to helpful actions and to include it look-
ahead states. Instead of stopping at first solution it continues
the search performing Branch and Bound until a time bound
is reached. For the competition we have set the w value in
the evaluation function to three. CBP has been implemented
in C, reusing part of the code of METRIC-FF.

References

Bryce, D., and Kambhampati, S. 2007. How to skin a plan-
ning graph for fun and profit:a tutorial on planning graph
based reachability heuristics. Al Magazine 28 No. 1:47-83.

Chen, Y.; Hsu, C.; and Wah, B. 2006. Temporal planning
using subgoal partitioning and resolution in SGPlan. Jour-
nal of Artificial Intelligence Research (JAIR) 26:323-369.

Do, M. B., and Kambhampati, S. 2003. Sapa: A scalable
multi-objective heuristic metric temporal planner. Journal
of Artificial Intelligence Research (JAIR) 20:155-194.

Fuentetaja, R.; Borrajo, D.; and Linares, C. 2009. A look-
ahead B&B search for cost-based planning. In Proceedings
of the 13th Conference of the Spanish Association for Arti-
ficial Intelligence (CAEPIA), 105-114.

Gerevini, A.; Saetti, A.; and Serina, I. 2004. Planning
with numerical expressions in LPG. In Proceedings of
the 16th European Conference on Artificial Intelligence
(ECAI), 667-671.

Hoffmann, J. 2003. The Metric-FF planning system:
Translating “ignoring delete lists” to numeric state vari-

ables. Journal of Artificial Intelligence Research (JAIR)
20:291-341.

Keyder, E., and Geffner, H. 2008. Heuristics for planning
with action costs revisited. In Proceedings of the 18th Eu-
ropean Conference on Artificial Intelligence (ECAI).

Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks revisited. In Proceedings of the 23rd American Asso-
ciation for the Advancement of Artificial Intelligence Con-
ference (AAAI), 975-982.

Sapena, O., and Onaindia, E. 2004. Handling numeric cri-
teria in relaxed planning graphs. In Advances in Artificial
Intelligence. IBERAMIA, LNAI 3315, 114-123.

Vidal, V. 2004. A lookahead strategy for heuristic search
planning. In Proceedings of the 14th International Con-
ference on Automated Planning and Scheduling (ICAPS),
150-159.

