
UNIVERSIDAD CARLOS III DE MADRID

ESCUELA POLITÉCNICA SUPERIOR

INEGENIERÍA INFORMÁTICA

Proyecto fin de carrera

A VIRTUAL ENVIRONMENT

FOR REASONING WITH

SENSORIAL INFORMATION

Author: Marta Moretón Arancón

Supervisor: Carlos Linares López

July 2010

Contents

1 Introduction 10

2 State of the art 13

2.1 Background . 14
2.2 Game AI . 17
2.3 Game genres . 19
2.4 AI approaches . 24

2.4.1 Planning . 24
2.4.2 AI Navigation . 25
2.4.3 Perception . 26
2.4.4 Memory . 27
2.4.5 Decision making techniques 28

2.5 Summary . 34

3 Objectives 35

4 Development 37

4.1 Description of the game . 38
4.1.1 What type of game? . 38
4.1.2 Characteristics . 38
4.1.3 Description . 39

4.2 Analysis . 44
4.2.1 Methodology . 44
4.2.2 Use cases . 46
4.2.3 Requirements . 52

4.3 Architectural design . 60
4.3.1 System overview . 61
4.3.2 System context . 66

CONTENTS 2

4.3.3 Decomposition description . 67
4.3.4 Complete design . 74

4.4 Detailed design . 75
4.4.1 Server . 75
4.4.2 Player . 77

4.5 Implementation . 83
4.5.1 Simulation of perceptions . 83
4.5.2 AI techniques . 91
4.5.3 Messages . 101

4.6 Summary . 105

5 Experimentation and results 106

5.1 Experiments . 107
5.2 Results . 118

6 Conclusions and future work 120

6.1 Conclusions . 120
6.2 Future work . 122

7 Planification and budget 124

7.1 Planification . 124
7.1.1 Initial planification . 125
7.1.2 Real planification . 126

7.2 Technical equipment . 127
7.2.1 Hardware . 127
7.2.2 Software . 127

7.3 Economical analysis . 128
7.3.1 Methodology . 128
7.3.2 Estimated cost . 128
7.3.3 Real cost . 130

A Reference manual 131

A.1 Installation of work environment . 131
A.1.1 Java installation . 131
A.1.2 Erlang installation . 131

A.2 Setting up the server . 132
A.2.1 Starting the server . 132

CONTENTS 3

A.2.2 Configuration file . 132
A.2.3 Defining a new scenario . 134

A.3 Playing the game . 136
A.4 Creation of a new agent . 139

List of Figures

2.1 Pacman screenshot . 14
2.2 Civilization III screenshot . 19
2.3 Starcraft screenshot . 20
2.4 Half life 2 screenshot . 21
2.5 Thief: Deadly shadows screenshot 22
2.6 Agent’s memory . 28
2.7 Bayesian networks . 31
2.8 Production systems cycle . 33

4.1 Evolutionary prototypes . 44
4.2 Use cases . 46
4.3 Game configuration use case . 46
4.4 Login use case . 47
4.5 Taking actions use case . 49
4.6 Updating status use case . 50
4.7 Client/Server architecture . 61
4.8 Client/Server communication . 62
4.9 System context . 66
4.10 Client/Server decomposition . 67
4.11 Client subsystem . 68
4.12 Server subsystem . 71
4.13 Complete design . 74
4.14 Login sequence diagram . 76
4.15 Game sequence diagram . 76
4.16 GUI player class diagram . 77
4.17 GUI Player sequence diagram . 78
4.18 Model player class diagram . 79

LIST OF FIGURES 5

4.19 Charade player class diagram . 81
4.20 Light propagation . 84
4.21 Filtering range of vision . 85
4.22 Bresenham’s line algorithm . 85
4.23 Hierarchy of elements . 87
4.24 Sound propagation . 89
4.25 Collision of sounds . 90
4.26 Masking effect . 91
4.27 Avoiding walls . 101

5.1 Single mode - Configuration experiment 1 109
5.2 Single mode - Configuration experiment 2 110
5.3 Single mode - Results of configuration 2 111
5.4 Normal mode - Configuration experiment 1 112
5.5 Normal mode - Configuration experiment 2 114
5.6 Normal mode - Configuration experiment 3 116
5.7 Summary - Results . 119

7.1 Initial planification diagram . 126
7.2 Real planification diagram . 126

A.1 CreateWorld screenshot . 134
A.2 Screenshot . 138

List of Tables

4.1 Use case definition table . 46
4.2 UC-01 - Load game configuration 47
4.3 UC-02 - Create new game . 47
4.4 UC-03 - Login into the game . 48
4.5 UC-04 - Create a proxy player . 48
4.6 UC-05 - Register player . 48
4.7 UC-06 - Send confirmation of login 48
4.8 UC-07 - Send action . 49
4.9 UC-08 - Insert action in the queue 49
4.10 UC-9 - Send acknowledgement of action 49
4.11 UC-10 - Execute actions . 50
4.12 UC-11 - Update status . 50
4.13 UC-12 - Filter status . 51
4.14 UC-13 - Send status . 51
4.15 Requirements definition table . 52
4.16 FR1 - Client/Server architecture . 52
4.17 FR2 - AI implementation . 52
4.18 FR3 - Game configuration . 53
4.19 FR4 - Updated game state . 53
4.20 FR5 - Real-Time implementation 53
4.21 FR6 - Multiplayer . 53
4.22 FR7 - Game functionality . 54
4.23 FR8 - Player’s perceptions . 54
4.24 FR9 - Signal propagation . 54
4.25 FR10 - Notification of perceptions 55
4.26 NFR1 - Processing time . 55
4.27 NFR2 - No access to unauthorized information 55

LIST OF TABLES 7

4.28 NFR3 - Easy to use . 56
4.29 NFR4 - System language . 56
4.30 NFR5 - Consistent game state . 56
4.31 NFR6 - Low failure rate . 57
4.32 NFR7 - Recovery from errors . 57
4.33 NFR8 - Game configuration file . 57
4.34 NFR9 - Platform independent . 58
4.35 NFR10 - Robust for invalid inputs 58
4.36 NFR11 - Easy to add new features 58
4.37 NFR12 - Easy to reuse . 59
4.38 Decomposition analysis . 67
4.39 Client component . 68
4.40 GUI Player component . 69
4.41 AI Player component . 69
4.42 Model Player component . 70
4.43 Communication component . 70
4.44 Server component . 71
4.45 Login server component . 72
4.46 Proxy Player component . 72
4.47 Game server component . 73
4.48 Configuration component . 73
4.49 GUI Player decomposition . 78
4.50 Model player decomposition . 80
4.51 Charade player decomposition . 82
4.52 Sound characteristics . 88

5.1 Server’s performance . 108
5.2 Normal mode (Configuration 1) - Results 113
5.3 Normal mode (Configuration 1) - Summary 113
5.4 Normal mode (Configuration 2) - Results 115
5.5 Normal mode (Configuration 2) - Summary 115
5.6 Normal mode (Configuration 3) - Results 117
5.7 Normal mode (Configuration 3) - Summary 117

7.1 Initial planification . 125
7.2 Real planification . 126
7.3 Estimated human resources costs . 129

LIST OF TABLES 8

7.4 Estimated HW costs . 129
7.5 Estimated SW costs . 129
7.6 Estimated total costs . 130
7.7 Real human resources costs . 130
7.8 Real total costs . 130

Acknowledgments

I would like to take this opportunity to express my gratitude to those people that,
in one way or another, have helped me to be where I am.

First of all, I want to thank my family for their support during the course of
my studies. Their guidance and advices have helped not only during my academic
years, but also for my personal development.

I have to give a special thank you for two people that have been very important
for me because maybe withouth them I would not have finished this project.
Alberto, it has been a pleasure to share all these years and experiences with you.
Thanks for your help, your patience and your understanding over these years.
Sergio, thanks for being there when and where I needed you and for believing in
me more than myself.

I have to include my most sincere gratefulness to my groups of friends, both
”dementes” and ”esn people”, that maybe they don’t know, but they have been a
great support for me, specially during the last months. Thanks for being there.

Finally, I would like to thank my tutor Carlos for his time, understanding
and confidence at every moment and also to Javier, for his support and assis-
tance along the way. Their collaboration has been essential for the development
of this project. It has been a pleasure to have worked with you over the past months.

Chapter 1

Introduction

Artificial Intelligence can be defined as ”the creation of computer programs that
emulate acting and thinking like a human, as well as acting and thinking ratio-
nally” [15]. Game AI can be seen as a subfield of it, in which the suitability of
different AI techniques is studied within computer game environments. AI is a
very new concept that was created in the middle of the 50s and its importance
has been increased over the years, acquiring a significant role in many disciplines
nowadays. Its applicability in computer games is growing exponentially, as they
present a very interesting AI research area. Game AI can be used to simulate very
realistic environments and therefore, facilitate the study of new AI techniques. They
also create new challenges in computer games and offer more fun and entertainment.

Computers can replace people in many areas because of their high-speed pro-
cessing that makes them more efficient and faster. However, they might present
more problems to represent the knowledge they acquire. Human being receives the
information of the world through his senses, but, which process does he follow to
analyse this data and how could it be simulated by a computer? There are three
main steps in a decision making process:

1. Receive the information: The world’s state is perceived. Total or partial
knowledge of the environment can be learnt, depending on each case. This
fact will be decisive for the agent’s behaviour.

2. Analysis: The information that has been obtained is structured and pro-
cessed. Knowledge representation is very important for the decision making
process, but it is not an easy task to do. Information can be incomplete and

11

the reasoning process has to be able to deal with it.

3. Choose action: Select one of the possible actions to perform and execute it.

These three processes constitute the called decision cycle and are described
as feel, think and act [17]. They are continuously executed until the goal is achieved.

Many games nowadays present a static and deterministic environment. However,
more realistic games tend to be more dynamic. Therefore, instead of just having to
execute a sequence of actions to reach the goals, player must react to changes in
the environment.

In summary, an efficient automatic agent needs five characteristics [17]:

• Reactive: Agent is able to respond quickly to changes in the environment.

• Context Specific : Agent’s actions are consistent with past information and
past actions.

• Flexible: Agent can choose among several actions in order to try to achieve
the goal.

• Realistic: Agent has a human-like behaviour.

• Easy to Develop: There is a simple and easy knowledge representation.

The final goal of this project is the development of an extendible open source
game that will allow the study of the AI techniques that can be suitable for this
domain. Also, as a result of this project, the implementation of an automatic player
able to manage itself in the scenario, trying to achieve its goals, will be presented.

This work has been structured as follows:

First of all, the background and the state of art will be analyzed. It is important
to have a clear idea of the existing work related to this topic in order to be able to
understand the contributions to the field that can be made. Starting from the anal-
ysis of the current situation and the existing solutions, it is important to learn about
current tendencies in computer game development. It is also necessary to perform

12

a study of the requirements of the particular problem we are going to solve in or-
der to check the suitability of solutions that already exist and solve similar problems.

Subsequently, a design of the architecture will be produced, containing the
solution that has been chosen in order to solve the above mentioned problem. This
approach can be based in one or more techniques previously studied in the state of
the art, whether a combination or an adaptation of many of them. This design will
define the structure and its components.

After the analysis and description of the solution, the results of its implementa-
tion will be shown and evaluate. The performance and feasibility of our approach
will be studied from these results.

Finally, some conclusions will be given in order to understand better the solution
that has been chosen, the results obtained and the benefits resulting from it.

Chapter 2

State of the art

Over the years, the game development industry has been growing exponentially,
acquiring more and more importance and creating new ways of entertainment for
a more demanding public. As a consequence, different technologies and techniques
have been developed in order to allow this progress.

For this reason, interesting results can be obtained from a research study of
the different technologies, ideas and solutions that have been developed within this
area. In this way, it will be possible to offer a new approach and try to make a
contribution into the field.

In this section, an introduction into the topic is given in order to get a closer view
of the area in which the project will be developed. First of all, some background
will be introduced in order to understand better the actual situation of computer
games development and its relation with artificial intelligence. The basic concepts
that are needed to understand this area of research will be presented and defined
from both, historical and technical, points of view. This will give an idea of the
advances in game development industry that have been developed so far.

Furthermore, different approaches will be studied in order to get an overview
of the current situation and understand which activities have to be performed to
achieve this goal of this project. Typical problems of game AI and existing solutions
will be analysed and compared with the problem to be solved here.

2.1 Background 14

2.1 Background

It is difficult to determine the origin of videogames, but it could be said that
the first videogame that was created was a two-player game, Nought and crosses,
developed by Alexander S.Douglas in 1952 for an EDSAC computer. In this game,
players could compete against the machine, playing the well known game called
tic-tac-toe, where they try to get three elements in a row before their opponent.
For doing so, the computer made its decisions based on the last player’s movement
by applying a very simple AI.

Aside from this first try of adding some simple level of intelligence to the game,
it was around 1970s when artificial intelligence concepts started to be included and
taken into account for the game industry. Before that, most games were made for
two human players, so no intelligence was needed. Some well-known examples are:
Tennis for two, by William Higginbotham in 1957 or Spacewar! by Steve Russell
in 1961.

Around 70s, single player games made their appearance and although they were
simple games, they started needing a minimum level of intelligence in order to be
able to create some level of challenge for players. Games such as Pac-man, Qwak
or Pursuit, that were released in that decade, presented some basic AI work. They
were making use of simple and basic patterns, that constituted the beginning
of the Artificial Intelligence applied to computer games. These basic patterns
were simple rules written within the code that defined a concrete behaviour by
selecting the actions to perform depending on some specific preconditions. For
instance, the ghosts in Pac-Man showed some predefined behaviour by making use
of deterministic movements and patterns that defined their different personalities.

Figure 2.1: Pacman screenshot

2.1 Background 15

Around 80s, home computers became more popular and therefore, more com-
puter games started to be developed. Furthermore, due to important technological
advances and more available resources, more complicated games were possible to be
developed. For these reasons, AI techniques moved from the previous ones and new
tendencies were created. The first step was the usage of Finite State Machines

(FSMs), composed by a finite set of states and transitions between those states.
They constituted a very deterministic and simple way of defining the actions to
perform in order to achieve an specific state of the game.

At the beginning of the 90s, Real-Time Strategy games arose. They
introduced new problems as decision making, pathfinding or uncertainty. An
important RTS game at that time was Dune II. Later on, Warcraft (1994) appeared
and became one of the most popular games in the history of computer games. Due
to its huge success, more versions have been developed during the years (Warcraft
II: Tides of Darkness, Warcraft III: Reign of Chaos,..)

Furthermore, new AI techniques were applied for computer games, such as
neural networks , introducing new AI concepts like machine learning, pattern
recognition or prediction.

Also, First-Person Shooter games rose in popularity with games like
Doom (1992) or Quake (1996) among others. This was helped by the important
improvements in computer game graphics. They also introduced new challenges for
the AI development. They will be discussed later in section 2.3.

With the appearance of The sims (2000), another genre of games was intro-
duced. It succeeded in the simulation of human behaviours. Players could take the
role of the members of a family, and the rest of characters were controlled by the
machine, which tried to act as real human players would do. Unlike other games,
there was no specific goal for this game, but players had to make decisions about
their characters’ lives: both professional and personal ones.

The production process of computer games has been changing over the years.
During the course of the history of computer games, AI has remained in the
background. This fact was due to two main factors: firstly, more importance was
given to the improvement of the graphical elements and secondly, it was normally

2.1 Background 16

left as the last part in game development process, after everything else was finished.
Nowadays, this tendency is changing: better AI techniques are being required as
well in order to simulate human-like and intelligent non-player characters, introduce
some certain level of challenge for players and create a differentiating element from
the rest of games.

At present, computer game industry have more success than music or movies.
Computer games are making use of the most advanced AI technologies: neural net-
works genetic algorithms and fuzzy logic and there are numerous projects working on
this field 1. Furthermore, there are even companies that are focused on specifically
developing AI for computer games, such as AiLive1 [Gamasutra, 2007] or Xaitment2

1http://aigamedev.com,www.gamedev.net,
http://ai4games.sourceforge.net/,
http://www.ai4g.com/,
http://fear.sourceforge.net/

2.2 Game AI 17

2.2 Game AI

Artificial intelligence can be defined as the research field of creation and simulation
of some intelligent behaviour. But, what is it meant with the term intelligence?
Among other definitions, it can be described as the ability to learn, adapt,
understand and evaluate the environment. In [15] is defined as the ability of acting
and thinking as human, but also acting and thinking rationally.

In order to play efficiently to a game and be able to compete to a human player,
some intelligence is required. The main goal is for the automatic player to present
some human-like behaviour or at least to create the illusion of intelligence [14].
Furthermore, it has to be taken into account the fact that game AI has to be
adapted to the player. It is not fun to play against simple opponents, but neither
it is to play against very intelligent ones that can never be defeated.

An important and very recurrent topic within the game AI area is cheating.
This situation can be created when extra benefits are given to the intelligent
systems, either because they are provided with additional information or because
their perceptual sensors are not as limited as human ones. In order to avoid
intelligent agents to take some advantage over human players, they should own the
same information, trying to imitate their knowledge model and using the same way
to get the information and the same actions to interact with the environment.

In particular, game AI can be seen as a subfield of the AI, that corresponds
to ”the code in a game that makes the computer-controlled opponents appear to
make smart decisions” [16]. Many types of games are making use of AI techniques
and traditionally, games have been used as a research field and a way of applying
and testing AI agents. This is because computer games present interesting and
challenging environments for many AI research problems: Strategical decisions,
adaptation to the environment, simulation of natural behaviour, navigation,
cooperation, resource allocation among others [18].

As it was explained in section 2.1, game AI has started to be considered as
an important part of the game development. Over the years, game developers are
getting more interested in the game AI field and it is becoming very important
within the game industry. This is due to the fact that companies look for a new

2.2 Game AI 18

element that differentiates them from the rest and this element tends to be the
AI component. Furthermore, due to the important technological advances, more
realistic environments are created and therefore more complex techniques are
needed in order to obtain better results.

There are many examples of computer games that have stood out due to the AI
techniques they were making use of. Black and white (Lionhead Studios, 2001) [19]
is an example of an important and impressive use of artificial intelligence in games.
Another outstanding example was F.E.A.R (Monolith Productions, 2005), whose AI
was considered one of the most important contributions to the game development
industry due to its advanced AI system: a real-time planning system with Goal-
Oriented Action Planning (GOAP). More examples include GoldenEye 007 (1997),
Half-Life (1998), Halo (2001), Far Cry (2004), Doom 3 (2004) or Left 4 Dead (2008)

Game theory

It can be defined as the study of the different ways in which strategic interactions
among rational players produce outcomes with respect to their preferences or utility
values 2. It can also be seen as a formal study of conflict and cooperation between
players, each one of them has individual preferences to achieve his personal goals.
Game theory formally makes a formal definition of the strategic reasoning by
making use of mathematical terms that calculate the utility value or welfare for the
different players and constitutes a valuable tool of conceptual analysis.

Game theory defines three concepts [15]:players, that are the participants in the
game, actions that players are allowed to perform and the payoff matrix, that shows
utility values for each combination of action and player. Each player will use these
elements to create its own strategy. They will try to maximize the outcome taking
into account the different actions that other players can do and the current situation
of the game.

2http://plato.stanford.edu/entries/game-theory/

2.3 Game genres 19

2.3 Game genres

There are different types of games, according to their common characteristics.

1. Turn-Based Strategy games (TBS)

Action does not take place in a continuous way, but it is divided in turns.
In each one of them, the correspondent player executes his actions. When
the turn finishes, the state of the game is updated with the results of these
actions and another turn starts for the next player. This continues like this
until the game is over.

As TBS games allow more time to make decisions, better and more compli-
cated strategies can arise. Furthermore, most of these games have complete
information facilitating the implementation of more complicated techniques,
as it happens for example in chess or risk.

Civilization 3: Game created by Sid Meier for MicroProse in 1991, that
consists on the creation and expansion of an empire. Players have to
decide about almost everything: when, what and where they want to
build, what they want to improve and so on, increasing hugely the scope
of the game. As the game became very successful, new versions were
developed: Civilization II (1996), Civilization III (2001), Civilization IV
(2005), Civilization Revolution (2008) and Civilization V (due to release
in 2010), apart from other related games.

Figure 2.2: Civilization III screenshot
3Civilization: http://www.civilization.com/

2.3 Game genres 20

2. Real-Time Strategy games (RTS)

They can be similar to Turn-Based Strategy games, but they introduce a big
difference: in RTS games, time is continuous, there are no pauses [3]. This
is very important, as players cannot take very long to make their decisions
because the environment keeps changing while they are deliberating. There
are two main domains for this type of games [14]: economy and combat. In
both of them, strategies are mainly oriented to groups, societies or armies
instead of individual units

They normally present imperfect information and contain features such as
resource collection and management, terrain exploration, structure building,
attacking, defending, among others. Solutions include elements like pathfind-
ing, decision-making under uncertainty, spatial and temporal reasoning,
adversarial reasoning, planning and hierarchical strategy planning. Normally,
goal-oriented reasoning works better as the number of possible actions may
be very large in this type of games.

Starcraft 4: One of the most well known games of this genre, it was created
by Blizzard Entertainment in 1998. In this version, three races or species
fight against each other for their survival and the dominance of the ter-
ritory. For doing so, players can create new units or buildings, research
new technologies, collect and make use of the resources among others.

Figure 2.3: Starcraft screenshot
4Starcraft: http://us.blizzard.com/en-us/games/sc/

2.3 Game genres 21

Other important games of this genre are Command and Conquer, Warcraft or
Age of Empires.

3. First Person Shooter games (FPS)

Action games presented from the player’s point of view. For this reason, they
normally tend to work individually, that is that each player takes control of
just one character [14]. Although this idea is changing and more games in
which several small units are controlled by a single player are appearing. This
type of games are mainly focused on attacking the enemies.

It represents the major genre in which game AI work has more relevant [16].
This is due to the fact that users have been encouraged to create their own
modifications (or ”mods”) of these games. Among them, bots are those that
are characterized for making use of AI techniques.

Half-Life 5 The main goal is the survival within a complex environment
where the player is attacked by different enemies. For doing so, he has to
solve several problems or puzzles. Bots, in half-life, have the particularity
of cooperating with each other when exchanging weapons to maximize
their attack or chasing the player to surround him.

Figure 2.4: Half life 2 screenshot

Quake III Arena 6 (1999): Multiplayer game where players compete
against bots that are computer-controlled (in single player modes) or
against human players (in multiplayer modes). Player earns points
when reaching goals. For doing so, he moves around the world, gathers
weapons and attacks his enemies. Game ends when timer is over or when

5Half-Life: http://orange.half-life2.com/
6Quake: http://www.quake3arena.com/

2.3 Game genres 22

a player reaches some specific location.

Bots have different characteristics and behaviours and use several AI tech-
niques: FSM, fuzzy logic,.. among others, presenting different levels of
difficulty. There are also several types of weapons with different char-
acteristics that make them more suitable for some situations than for
others.

4. Stealth games

Also called ”First-person sneaker” games, where mainly the goals are detection
avoidance and hiding from enemies. They are almost identical to FPS games,
but players tend to hide from their enemies, instead of fighting with them. [14].

As this type of games give high importance to the idea of players avoiding
being discovered, perceptual elements are very important.

Thief: Very innovator game that includes a high amount of possible actions
to take. Players have to discover the world and try not to be perceived
by the guards. The latters make use of very advance AI techniques in
order to discover and chase the players and fight against them. This game
uses different levels of alert for the guards, indicating how suspicious they
are of having a player close to them. These levels increase or decrease
depending on the perceptions they get from the environment.

Figure 2.5: Thief: Deadly shadows screenshot

Due to its popularity and innovation, three different games have been

2.3 Game genres 23

released: Thief: Deadly shadows 7, Thief: The Metal Age and Thief:
The Dark Project

5. Role-Playing games (RPG)
In these games, there is normally a story in which players represent game
characters. They have different characteristics, according to the role they
take. These characteristics are usually divided in three categories: attributes
(own characteristics), skills (learned capabilities) and powers (extraordinary
abilities). Normally, in these games, players keep growing as the story goes on.
They usually include tasks or goals like learning, training, earning, recollecting
or building. As RPGs represent a story, there are other people involved in the
game that interact with human players and are called Non-Player Characters
(NPC). Usually they are not very smart, they just help to continue the story
giving for instance some information to the players when they interact.

7Thief, Deadly shadows: http://www.eidos.co.uk/gss/thief ds/

2.4 AI approaches 24

2.4 AI approaches

This section introduces some of the existing AI techniques used in computer games.
Their usability and efficiency are analysed in order to identify their suitability for this
project. Five different concepts are discussed: planning, AI navigation, perception,
memory and decision-making techniques.

2.4.1 Planning

This section introduces several techniques that deal with: presence of uncertainty,
incomplete information and existence of changes in the environment. For these
problems, agents cannot make use of single-agent search algorithms as they have to
adapt their plans to the changes in the environment. There are two main search or
planner algorithms that focus this situation: Incremental Heuristic and Real-time
Heuristic.

Incremental planning: Incremental algorithms make use of information related
to previous searches in order to find solutions for similar problems faster than
if it starts from scratch. Also called continuous planning or replanning. It can
provide good results for some domains in which changes are not so frequent
or new states of the game turn out to be slightly different from those that the
agent visited in his planning [10].

Real-Time planning: It needs to be dynamic and be able to handle better unex-
pected situations as goals and environments keep changing over time [13]. For
doing so, real-time algorithms alternate planification (restricting its search to
the part of the domain adjacent to the current state of the world) and plan
execution. Therefore, the sequence of actions needed to satisfy some goal is
computed, but when a change in the environment is detected, the current goals
are checked and the plan is recalculated if necessary [11]. In order to execute
this replanning process, the solution implemented in [6] and [5] is the search
of intermediate goals that will lead to the final goal. Then, by making use of a
heuristic process, a new plan will be generated, going through one of the inter-
mediate goals in order to reach the final one. For instance, F.E.A.R 8 makes
use of Real-Time planning to implement automatic players that combat with
human or robotic enemies.

8http://www.whatisfear.com/

2.4 AI approaches 25

2.4.2 AI Navigation

It corresponds the ability of reaching specific locations of the scenario. Two impor-
tant aspects are discussed: how to find the shortest path to the target (pathfinding)
and how to avoid the obstacles on the way.

Pathfinding

Calculation of the best way between two specific locations, meaning by best,
the one that gives a best utility value or has the smallest cost. The best
path is not necessary the shortest one, as there might be obstacles in between
or areas that introduce some cost if agents go though them. Therefore,
pathfinding has to deal with four aspects [4]: how to get form one point to
the other, how to avoid the obstacles, how to find the shortest path and how
to do it quickly.

Search is one of the most used techniques to solve pathfinding problems:

• Dijkstra: It is a graph based algorithm, where nodes represent the
different points or cells that agents can visit and edges define the cost
of moving from one to another. The idea of this algorithm is the
exploration of all the short paths that go from the origin to the rest of
nodes. When the final point is reached, the algorithm stops and returns
the path computed so far. Although it gives good results, it is not valid
for graphs with negative costs and it can be inefficient for big domains
in which the number of possible nodes grows arbitrarily.

• A*: It uses a best-first search to find the least-cost path between two
given points. Unlike Dijkstra’s algorithm, it makes use of a heuristic
function that not only takes into account the cost from the origin point,
but it includes an estimation of the final one:

f(node) = g(n) + h(n)

where g(n) represents the cost from the initial node to n and h(n) is an
estimation of cost from n to the target.

A* is widely used nowadays to solve pathfinding problems. It obtains
better results than Dijkstra’s algorithm as it reduces the search space

2.4 AI approaches 26

taking into account the distance to the final point.

• RTA* (Real-Time A*): Modification of A* that controls the search
in real-time domains. It stores the value of each visited state in a hash
table and it keeps updating them by making use of dynamic programming
techniques.

Obstacle avoidance

Similar concept to pathfinding, but obstacle avoidance tends to be more re-
active as agents need to avoid obstacles when they find them instead of pre-
computing them when calculating the path they are going to follow. Usually,
pathfinding algorithms are used because there is complete information about
the environment, therefore, the best path can be calculated. However, obsta-
cle avoidance is more suitable for those cases where there is some uncertainty
about the environment, whether it is due to the fact that agents have incom-
plete knowledge or the existence of dynamic obstacles.

2.4.3 Perception

Percepts are used to gather information in partially observed games. As players do
not have a complete knowledge of the game state, they need their perceptions to
learn it. As shown in [9], there are different types of perceptions that are propagated
and perceived in a different way [14]. For this reason, they are treated independently:

• Visual

This perception depends on several factors:

– Distance from the observer to the object

– Blocking elements. In case there are elements between the observer
and the object, it would be more difficult to detect. A ray-trace [9] can
be used to determine whether there is an element in between or not.

– Visual field of the player, that corresponds to the area which the
player is facing at.

– Visual conditions in the object’s area.

In [16], they use a combination of these elements that gives a perception prob-
ability value (from 0 to 1) that determines the certainty for the observer to
perceive the object.

2.4 AI approaches 27

• Auditive

Actions can have some sound level and tone associated to them so they can be
distinguished by agents. Different sounds can interfere with each other [14],
being necessary to stand out those important sounds from the unimportant
ones. Auditive perceptions help to get information about events that happen
in an area close to the agent, but maybe not visible to him.

• Tactile

It normally represents what the player feels and the reaction to pain and object
collision.

2.4.4 Memory

The term belief maintenance is defined in [7] as the reliability of player’s beliefs to be
consistent with the state of the game. In a partially observable domain, the player
does not count with complete information about the environment. Furthermore, if
it corresponds to a dynamic environment, the information that players gather is not
always an accurate representation of the game state. Longer it is since the player
received the information, more likely it is that the current situation does not agree
with it. For instance, a player might see an object in an specific position and store
such information in a beliefs list. As time goes by, if the player is no longer looking
at that position, the probability for that object to still be there decreases. So, the
player now bases its reasoning on some facts that might not be true anymore. For
instance, fig 2.6 represents two different moments of a game. In the first one, the
player is able to see where the enemy is, but as he continues walking, the enemy
disappears from his visual field. In the second instant, the player remembers the
position in which he saw the enemy for the last time. But in this case, this fact is not
true anymore, as he has also moved to another position. For this reason, it is very
important to determine whether these beliefs are still reliable or not. In order to
solve this problem, [7] suggests the idea of comparing the time since the information
was obtained with a threshold value. In case the first one is bigger, that information
is not valid anymore, so it is whether deleted from the beliefs list or it is checked
again.

2.4 AI approaches 28

Figure 2.6: Agent’s memory

2.4.5 Decision making techniques

They can be defined as the processes of choosing an action to perform for the
current state of the world. They constitute a very important part in the AI field
and try to imitate the human way of reasoning. However, it is not an easy task
to do. One of the main difficulties is the way of modelling the information in
order to deal with it and obtain the necessary knowledge from it. Sometimes it
is also necessary to deal with uncertainty if the outcomes of the actions are not
deterministic and the information is not complete.

There is no a standard solution for all the problems. Depending on their
characteristics, it will be better to use one or another. Four different techniques
are discussed in this section: Finite-State Machines, Fuzzy logic, Bayesian networks
and Production systems

1. Finite-State Machines (FSMs)

Behaviour models formed by a finite number of states and transitions between
them. Each state shows a different situation of the world and transitions
define those actions that are needed in order to move from one state to
another. Transitions also have a set of preconditions that must be fulfilled in
order to allow the movement to the next state.

They constitute a very simple AI technique and its implementation can
be pretty straightforward. It has been mainly used for FPS games, so
the different states of the game may be easier to represent. For example,
in Quake2, monsters’ states can be defined as one of the following nine:

2.4 AI approaches 29

standing, walking, running, dodging, attacking, melee, seeing the enemy, idle
and searching. In this way, depending on some preconditions and the actions
they perform, they will behave in different ways.

On the other hand, they are no suitable for every domain, for instance
in non-deterministic environments, as FSMs need to know all the possible
states and actions. Furthermore, they might not work very efficiently for
large systems, being difficult to manage a high number of states. More-
over, when used for videogames, it can be very predictable and therefore,
not representing a challenge for the player once the latter learns its movements.

2. Fuzzy logic

It can be defined as a type of logic that uses vague information to make
decisions, trying to imitate the human way of thinking. In classic logic,
statements are either true or false. However, this changes in fuzzy logic: there
are different degrees of truth. For instance, in classic logic the statement ”it
is hot” can be either true or false. However, in fuzzy logic, there are different
degrees: very cold, cold, normal, hot,...

In fuzzy logic, decisions are taken according to a set of ”if-then” rules that are
associated to different fuzzy sets. For instance:

if temperature is very cold
stop fan

else if temperature is cold
turn fan

else if temperature is normal
maintain level

else if temperature is hot
speed up fan

They are robust and tolerate vagueness or imprecision input values. Intro-
ducing some degrees of truth lets the player to deal not only with extreme
situations, but also with intermediate ones and act more specifically for each
one of them. In those situations that is not possible to classify everything as

2.4 AI approaches 30

white or black (or true or false), fuzzy logic helps to deal with all they grey
areas in between [12].

3. Bayesian networks

They are used to model knowledge and cause-effect relationships and to per-
form inference and learning, They deal with partial or incomplete information
and are based on Bayes theorem, that determines dependence relationships
and can be written as follows:

P(A|B) = P(B|A)P(A)/P(B)

Where P(A |B) is the probability of B knowing that A is true, P(A) is the
probability of A and P(B) is the probability of B to happen.

Bayesian networks are formed by directed acyclic graphs (DAG) that represent
these dependence relationships between variables. Each node represents a
different variable and has a probability value assigned to it, calculated from
the node’s parent variables. Each arc defines the dependence relationship
between the pair of variables that it connects.

Despite of the ability for the bayesian networks to provide inference under
uncertain conditions, their usage has not expanded in the game AI field. It
might be due to the fact that, although they can be used for a wide variety
of game genres, their complexity increases hugely as the domain gets more
complex [8]. However, due to technological progress, they are becoming more
feasible.

2.4 AI approaches 31

Figure 2.7: Bayesian networks

Figure 2.7 9 shows an example of a bayesian network with one input node
(C), two intermediate ones (S and R) and one output (W). Tables represent
the distribution of probabilities.

Bayesian networks represent a simple and robust way of representing and
dealing with uncertain information. They also can be used for prediction as
they handle probability values. They are suitable for small and incomplete
data sets.

4. Production systems

Also called Expert systems, production systems try to decide which is the best
action to perform from a list of conditional statements or rules that define
the steps that are needed to solve a problem depending on the current state
of the world.

In doing so, problems are defined by three modules:

• Working memory: Constituted by predicates or facts that describe
the problem and define the agent’s knowledge at each moment.

9http://www.ra.cs.uni-tuebingen.de

2.4 AI approaches 32

• Rule base: Rules or conditions that describe the reasoning process
created to solve the problem. They are a set of rules that define
conditional statements expressed in a ”if-then” form in order to describe
the preconditions that have to be fulfilled in order to execute each action.

• Inference engine: It executes the strategy obtained from matching the
working memory and the rules that can be applied to it, acting as a rule
interpreter.

In Figure 2.8, the making decision process can be seen. It consists on three
important steps:

• Matching: Determining the active rules from the rule base, that is, the
rules that can be applied to the current state of the world. Although
only one action will be executed, the result of this process is a conflict
set that includes all the rules than have been activated. In doing so,
left-hand-side conditions are compared against the elements of working
memory. In case they match and therefore preconditions are fulfilled,
that rule is included into the conflict set.

• Conflict resolution: Choosing the rule to execute among all the rules
that have been activated and therefore included into the conflict set.
There is not an unique way of solving this problem, as it can be done
from the simplest (e.g. random selection) to a more complex process
(for instance, according to some priority values in which some specific
actions are preferred over the rest).

• Strategy execution: Once the strategy has been decided and therefore
the action to perform is known, it is executed. This will produce
a modification in the world, needing to update agent’s knowledge,
removing or adding data to the working memory.

2.4 AI approaches 33

Figure 2.8: Production systems cycle

2.5 Summary 34

2.5 Summary

In this section, the computer game history has been shown, analysing the evolution
of the games, their complexity and the necessity of including a better AI in their
development. Moreover, it has been seen that more and more intelligence is being
demanded for the NPCs (Non-Playing Characters), not only to present some level
of challenge to players but also as an unique selling point to distinguish a game
from the rest.

Furthermore, several game genres (TBS, RTS, FPS, Stealth games and RPG)
have been defined, giving some examples of each one of them and also showing
the different challenges they present to the game AI field. Furthermore, different
concepts that are needed to take into account to implement AI game techniques
have been shown.

All these elements will be used in next sections in order to explain the problem
domain to solve and the solution that has been chosen and the reasons for having
done it.

Chapter 3

Objectives

The goal of this project is the study and implementation of one or more artificial
intelligence techniques in order to create an automatic player within a game scenario
that will contain First-Person Shooter (FPS) and stealth game elements. The client
will execute his actions against other players (be they humans or machines) and
will have to do it in the most efficient way possible.

Firstly, the specification of the scenario will be determined. The system will
just simulate a real-time game: it will be divided into small ticks of time which in
their turns will be split into two parts: planification time — in which the clients
are allowed to send their actions) and execution time (in which the server updates
the current state of the game and informs the players about it.

The architecture will be composed of one server and several clients that will
connect to it. The information of the game will be centralised within the server,
being the players aware of just those parts that correspond to them.

The characteristics of the game are determined in such a way that gives enough
complexity to the problem and lets the possibility of making an interesting study
of the different approaches according to them. For doing so, several aspects will be
taken into consideration:

Perception: The player will use his visual and auditive perceptions to learn about
what is happening in the world.

36

Non-complete information: The player does not have a complete vision of the
game, he only knows what he is perceiving in each moment. This perception
will depend on several factors: his own characteristics (visual and auditive per-
ceptions) and also the environmental ones — existence of walls, illumination,
noise, etc.

Uncertainty: The result of his actions is not deterministic, it depends on other
factors (enemies, changing elements and so on).

After the domain is defined and created, the different algorithms and approaches
are studied and implemented according to it. These techniques will deal with dif-
ferent aspects:

Path-finding: Be able to find the most efficient path from one point to another,
taking into account the different obstacles, doors, walls and other objects that
exist within the environment.

Decision making: Depending on the current situation in each moment, the player
will decide the action to perform: attack the enemy, pick up the objects that
might be used later on, avoid being discovered or reach concrete points of the
map.

Adaptation: The player has to be aware of the changes in the environment and
be able to modify the plan he is executing in order to adapt himself.

As mentioned above, the focus of the project will be centralised in the study of
the different approaches that can be used for the implementation of the player, but
also in the definition and implementation of the system. It will be also interesting
to determine which elements from the domain are more relevant when selecting one
algorithm or another. Finally, in order to make its evaluation of its efficiency, it will
be tested against other machine clients that could present or not some intelligence,
but also with real players. The reason of doing that is because, in this way, the
implications of the usage of artificial intelligence can be tested by analyzing its
performance against simple clients (that, for example, execute random actions) and
seeing the improvements they introduce. On the other hand, the fact of comparing
its performance against human abilities brings back the discussion about the possible
substitution of human behaviours by intelligent systems.

Chapter 4

Development

In this chapter, the different steps that are needed for the implementation of this
project are discussed.

In first place, the definition of the game is presented: its characteristics and the
main elements that compose it. This is important to understand what problem is
wanted to be solved and the challenges it presents. Secondly, an analysis of the
project is made, showing the different use cases that describe the behaviour of the
system and defining the requirements that must be fulfilled. Then, the solution is
defined by showing the architecture that has been chosen for the implementation
of the system. For doing so, the main components and their subcomponents are
defined and analysed. Next, the detailed design is presented, giving a more precise
information of the system’s implementation, showing UML class diagrams and se-
quence diagrams that will show the behaviour of more concrete elements and the
interaction between them. Finally, more details about the implementation are given,
explaining the decisions that have been made to develop the game engine and the
AI techniques that have been used to create the automatic player.

4.1 Description of the game 38

4.1 Description of the game

In this section, the game to be implemented is introduced: its main characteristics
are analysed and its key elements are defined. The game is classified according to
the criteria explained in section 2.3 and the challenges it presents are introduced.

4.1.1 What type of game?

It is a Real-Time game where players compete against each other in order to achieve
their goals. For doing so, they receive information from the environment through
their perceptions: visual, auditive and tactile. They can also interact with other
players: (attacking, shouting,..) and with the environment (opening and closing
doors, picking up and using objects,...).

The game’s world is composed by a grid of cells which are surrounded by walls
and doors. The latters can be open, closed or locked. There are also some items
that can be picked up and used by the player (like keys to open doors or torches
to light up with fire), as well as weapons and ammunitions that can be used to
attack the enemies. Furthermore, some cells contain obstacles, such as fire or
bushes, that do not allow the access to the player and may cause them some dam-
age. Every element occupies just one single cell and there is only one element per cell.

4.1.2 Characteristics

The game designed for this project shows the following characteristics:

Multi-agent: Different players are competing against each other at the same time.

Partially Observable: Players only have local perception about the environment.
They only know about what they are perceiving in each moment, so they do
not have complete knowledge about all the elements of the game.

Stochastic: Outcomes from players’ actions are not always deterministic. Players
normally know what to expect from their actions, but there could be some
situations in which the result is not what they had anticipated.

Sequential: Current decisions can affect future ones. As the course of the game
is continuos and not divided in episodes, consequences of players’ actions can
affect the future. For instance if a player decides to pick up a key, the actions

4.1 Description of the game 39

to perform when he finds the correspondent door to open will be different than
if he had not picked it up.

Dynamic: Environment can change while players are deliberating. As there are
more players playing the game, they can modify the game’s world while the
player is not performing any action.

4.1.3 Description

In order to understand the functionality of the game, all its key elements and the
possible actions players can perform are now defined:

1. Elements

• Players: Automatic or human players that participate in the game and
compete against each other. They all have the following characteristics:

– Life: Points of energy that can decrease (when the player is
attacked) or increase (by getting powers).

– Weight: Measure of heaviness of the objects the player is carrying.
When it reaches its maximum value, the player is not able to carry
anything else.

– Visual perception: threshold value from which the player is able
to see.

– Auditive perception: threshold value from which the player is
able to hear.

• Walls and doors: They separate rooms and they are located between
cells. They have an attenuation value, that represents the lost of sound
intensity when it is being transmitted through them. Doors also have
another characteristic that shows its status within the game: open,
closed or locked.

4.1 Description of the game 40

• Weapons: They are used by players to attack each other. There are dif-
ferent types: arch, knife and gun. All of them present some characteristics
that distinguish them from each other:

– Distance: Number of cells that the attack of this weapon can reach.

– Strength: Points of life that takes away from a player when it is
hit by it.

– Noise: Intensity of the sound that makes when it is used.

• Objects: They can be picked up and used by the players. There are
different types:

– Key: To be used in order to open the doors. They cannot open
every door, each one of the keys is associated to an specific door.

– Torch: They can be lit on with fire, giving extra light to the area
where they are located.

– Ammunition: Players can use them to reload their weapons. There
are two types: bullets and arrows.

• Obstacles: They do not let players to go through the cells where they
are located. There are different types of obstacles: fire, statue, bushes,..
Some of them penalize those players that are shocked against them. For
instance, when touching fire, life points are taken away.

They present two important characteristics:

– Damage: The amount of life points that are taken away from the
player.

– Attenuation: It stops from seeing a player if he is hidden behind.

• Powers: They act as a reward for the players, giving them more life
points.

4.1 Description of the game 41

• Temporal elements: They appear at some points of the game and only
last for few cycles. There are two types: footsteps (left by players when
they walk on sand) and echo (created by loud noises). They have three
important characteristics:

– Duration: Time they will remain.

– Intensity: Strength of the signal (visual or auditive) to be perceived
by the players.

– Attenuation: Lose of intensity in each cycle that the sound is
repeating.

Temporal elements do not react or interact with the player, they just
provide additional information (for instance, the fact of seeing some
footprints can tell that somebody was there not very long time ago) and
then they disappear.

2. Actions

This is the list of actions that can be performed by the players:

• Attack

Parameters: Weapon w used to attack.

Preconditions: Player has a weapon w with ammunition.

Effects: The player that is attacked loses life points if he is reached
and the attacker spends the correspondent ammunition.

• Close door

Parameters: Door d to be closed.

Preconditions: Door d is open and player is situated in an adjacent
cell facing at it.

Effects: Door d is closed.

4.1 Description of the game 42

• Leave item

Parameters: Item i to be left.

Preconditions: Player has the item i and the cell where he is situ-
ated is empty.

Effects: The item is left and the player does not have it anymore.

• Move : From cell (x1, y1) to cell (x2, y2).

Parameters: Cell (x1, y1) and (x2, y2).

Preconditions: Player is in cell (x1, y1) and there is no wall, obstacle
or closed or locked door between the two cells.

Effects: Player ends up in cell (x2, y2)

• Open door

Parameters: Door d to be opened.

Preconditions: Door d is closed and player is situated in an adja-
cent cell facing at it.

Effects: Door d is open.

• Pick up

Parameters: none

Preconditions: There is an item to pickup in the cell where the
player is located.

Effects: The player has the item.

• Reload weapon

Parameters: Ammunition a to reload weapon w.

Preconditions: Player has the weapon to reload and the ammuni-
tion needed to do it

Effects: The weapon is loaded.

• Shout

Parameters: none

Preconditions: none

4.1 Description of the game 43

Effects: Player has made a sound.

• Switch torch off

Parameters: Torch t.

Preconditions: Player has a torch t and it is lit.

Effects: The torch is unlit.

• Switch torch on

Parameters: Torch t.

Preconditions: Player has a torch t and it is unlit.

Effects: The torch is lit.

• Touch

Parameters: none

Preconditions: There is an element in the cell where the player is
located.

Effects: Player gets information about an element and is able to
identify it.

• Turn

Parameters: none

Preconditions: none

Effects: Player faces to a different direction.

• Use key

Parameters: Key k and door d

Preconditions: Player has key k, he is facing door d, that is locked
and can be opened with k.

Effects: Player does not have the key k anymore and door d is
unlocked.

4.2 Analysis 44

4.2 Analysis

In this section the development process is introduced, explaining different decisions
and assumptions that have been made. Furthermore, the different use cases are
defined and the project’s requirements are discussed.

4.2.1 Methodology

The methodology that has been chosen is based on evolutionary prototypes. That
means that different versions (or prototypes) will be created within the system’s de-
velopment. In each iteration, new features are added to the previous version. First of
all, a basic prototype will be implemented. Starting from it, different functionalities
will be added, continuing this process until the scope of this project is reached.

Figure 4.1: Evolutionary prototypes

Each iteration can be divided in different steps as shown in Figure 4.1:

1. Analysis: Identification of the main requirements for each iteration.

2. Design: Description of the components that are required to fulfill the
requirements that have been identified. This section will be decomposed later
on in this document into two sections: architectural and detailed design.

3. Implementation: Codification of the new classes that have been specified in
the design.

4.2 Analysis 45

4. Test: Confirmation of having achieved the correspondent goals for this
iteration.

5. Prototype: Result of the iteration that corresponds to a subversion of the
final system.

This methodology has many advantages and has been chosen for two main rea-
sons: incremental development and avoidance of error propagation. In this docu-
ment, the above mentioned steps will be shown for the last iteration.

4.2 Analysis 46

4.2.2 Use cases

Four different use cases (Figure 4.2) are discussed in this section.

Figure 4.2: Use cases

For doing so, tables are shown, each one of them will correspond to a different
use case and contain the following information:

Identifier Used to univocally identify the use cases. They all start with UC -
XX, where XX represents the requirement’s sequencial number.

Name Identifies the use case in a clear and simple way.

Preconditions Requirements that have to be fullfilled so the use case can be started.

Description Brief explanation of the requirement

Table 4.1: Use case definition table

1. Configurating the game

This use case starts when a new game is going to be created and it is started
by the server. Once it finishes, it passively waits for the players to login.

Figure 4.3: Game configuration use case

4.2 Analysis 47

Identifier UC-01

Name Load game configuration

Preconditions None

Description The parameters of the game are loaded.

Table 4.2: UC-01 - Load game configuration

Identifier UC-02

Name Create new game

Preconditions The configuration of the game has been loaded.

Description A new game is created from the parameters that have been
loaded.

Table 4.3: UC-02 - Create new game

2. Joining the game

This use case represents a scenario in which the player wants to enter the game.
This only can be done before each game starts until the maximun number of
players is reached.

Figure 4.4: Login use case

4.2 Analysis 48

Identifier UC-03

Name Login into the game

Preconditions None

Description The player joins the game by inserting his username and con-
necting to the login server.

Table 4.4: UC-03 - Login into the game

Identifier UC-04

Name Create a proxy player.

Preconditions The user has joined the game.

Description A new process that will act as the proxy is created and the
login server connects to it.

Table 4.5: UC-04 - Create a proxy player

Identifier UC-05

Name Register player

Preconditions The login server has connected to the proxy player.

Description The server tries to register the player into the game.

Table 4.6: UC-05 - Register player

Identifier UC-06

Name Send confirmation of login

Preconditions The server has tried to register the player into the game.

Description The player obtains the answer from the server through the
correspondent proxy player.

Table 4.7: UC-06 - Send confirmation of login

3. Taking actions

This use case represents a scenario in which a player wants to send his action
to the server. It starts when he decides the action he wants to perform. It is
repeated along the game, whenever he wants to do something and therefore,
notify the server about it.

4.2 Analysis 49

Figure 4.5: Taking actions use case

Identifier UC-07

Name Send action

Preconditions None

Description The player chooses the action to perform and sends it to the
server.

Table 4.8: UC-07 - Send action

Identifier UC-08

Name Insert action in the queue

Preconditions The player has sent his action to the server.

Description The server inserts the player’s action in a queue of actions.

Table 4.9: UC-08 - Insert action in the queue

Identifier UC-9

Name Send acknowledgement of action

Preconditions The player has received the action and inserted it in the
queue.

Description Server sends to the player a confirmation message when it
receives his action.

Table 4.10: UC-9 - Send acknowledgement of action

4.2 Analysis 50

4. Sending game state

This use case starts when the server receives the notification of the timer,
indicating the begining of the executing phase, where the server calculates the
status of the game and sends it to all players.

Figure 4.6: Updating status use case

Identifier UC-10

Name Execute actions

Preconditions None

Description The server executes all the actions it has received from all
the players.

Table 4.11: UC-10 - Execute actions

Identifier UC-11

Name Update status

Preconditions The actions have been executed.

Description The status is updated according to the results of the actions
that have been performed by the players.

Table 4.12: UC-11 - Update status

4.2 Analysis 51

Identifier UC-12

Name Filter state

Preconditions The current game state has been calculated.

Description The perception of the world is different for each player, there-
fore the information is filtered according to players’ condi-
tions.

Table 4.13: UC-12 - Filter status

Identifier UC-13

Name Send status

Preconditions The status has been filtered

Description The part of the world that the player perceives is sent to him.

Table 4.14: UC-13 - Send status

4.2 Analysis 52

4.2.3 Requirements

This section shows the functional requirements to fulfill. The taxonomy used to
classify the different requirements follows the standard defined in Métrica [2]. For
doing so, for each requirement the next table will be shown:

Id Used to identify the non-functional requirements. They all
follow this format: FR - XX (for functional requirements)
and NFR-XX (for non-functional requirements, where XX
represents the requirement’s sequential number.

Name Identifies the requirement in a simple and easy way

Description Brief explanation of the requirement

Priority Necessity of its implementation for the developer

Stability Possibility of being subjected to modifications, whether they
are made by the client or some other reasons

Necessity Importance of its implementation for the client or final user

Table 4.15: Requirements definition table

1. Functional requirements

Id FR-1

Name Client/Server architecture

Description A Client/server architecture has to be implemented

Priority High

Stability Stable

Necessity High

Table 4.16: FR1 - Client/Server architecture

Id FR-2

Name AI implementation

Description At least one AI technique must be implemented in both prob-
lem domains

Priority High

Stability Stable

Necessity Medium

Table 4.17: FR2 - AI implementation

4.2 Analysis 53

Id FR-3

Name Game configuration

Description Be able to configure the game from a file

Priority Medium

Stability Stable

Necessity Medium

Table 4.18: FR3 - Game configuration

Id FR-4

Name Updated game state

Description All players have to know the current game state at anytime

Priority High

Stability Stable

Necessity High

Table 4.19: FR4 - Updated game state

Id FR-5

Name Real-Time implementation

Description Server keeps sending the game status to the players without
waiting for them to send their actions

Priority High

Stability Stable

Necessity High

Table 4.20: FR5 - Real-Time implementation

Id FR-6

Name Multiplayer

Description The system has to allow connections from several players at
the same time

Priority High

Stability Stable

Necessity High

Table 4.21: FR6 - Multiplayer

4.2 Analysis 54

Id FR-7

Name Game functionality

Description System has to be able to let players pick up, use and leave
items, attach other players, open and close doors, reload
weapons an move around the game world

Priority Medium

Stability Unstable

Necessity Low

Table 4.22: FR7 - Game functionality

Id FR-8

Name Player’s perceptions

Description System has to be able to simulate player’s perceptions.

Priority High

Stability Stable

Necessity High

Table 4.23: FR8 - Player’s perceptions

Id FR-9

Name Signal propagation

Description System has to be able to simulate the propagations of, both
visual and auditive, signals.

Priority High

Stability Stable

Necessity High

Table 4.24: FR9 - Signal propagation

4.2 Analysis 55

Id FR-10

Name Notification of perceptions

Description System has to notify the players about their perceptions (vi-
sual, auditive and tactile).

Priority High

Stability Stable

Necessity High

Table 4.25: FR10 - Notification of perceptions

2. Non-Functional Requirements

(a) Performance requirements

Id NFR-1

Name Processing time

Description Server has to calculate new game state and send it to the
players in less than 1 second.

Priority Medium

Stability Stable

Necessity High

Table 4.26: NFR1 - Processing time

(b) Security requirements

Id NFR-2

Name No access to unauthorized information

Description Player must receive only the information he is allowed to
have.

Priority High

Stability Stable

Necessity High

Table 4.27: NFR2 - No access to unauthorized information

4.2 Analysis 56

(c) Usability requirements

Id NFR-3

Name Easy to use

Description Player does not need more than few seconds to learn how to
do something.

Priority Medium

Stability Stable

Necessity High

Table 4.28: NFR3 - Easy to use

Id NFR-4

Name System language

Description The language used in the system will be English..

Priority Low

Stability Unstable

Necessity Low

Table 4.29: NFR4 - System language

(d) Reliability requirements

Id NFR-5

Name Consistent game state

Description The game status has to be consistent at every time for all the
players.

Priority High

Stability Stable

Necessity High

Table 4.30: NFR5 - Consistent game state

4.2 Analysis 57

Id NFR-6

Name Low failure rate

Description The number of failures has to be less than 2%.

Priority High

Stability High

Necessity High

Table 4.31: NFR6 - Low failure rate

Id NFR-7

Name Recovery from errors

Description The system has to be able to recover from errors.

Priority High

Stability Stable

Necessity High

Table 4.32: NFR7 - Recovery from errors

(e) Operational requirements

Id NFR-8

Name Game configuration file

Description Be able to read a configuration file of the game written in
XML.

Priority Medium

Stability Unstable

Necessity Low

Table 4.33: NFR8 - Game configuration file

4.2 Analysis 58

(f) Portability requirements

Id NFR-9

Name Platform independent

Description The system has to work under Mac Os X, Linux and Win-
dows.

Priority High

Stability Stable

Necessity Medium

Table 4.34: NFR9 - Platform independent

(g) Robustness requirements

Id NFR-10

Name Robust for invalid inputs

Description Works in presence of invalid inputs made by the human player
when using the system.

Priority High

Stability Stable

Necessity High

Table 4.35: NFR10 - Robust for invalid inputs

(h) Modifiability requirements

Id NFR-11

Name Easy to add new features

Description It has to be modular and flexible enough to make easier the
addition of new actions or elements to the game.

Priority High

Stability Stable

Necessity Medium

Table 4.36: NFR11 - Easy to add new features

4.2 Analysis 59

(i) Reusability requirements

Id NFR-12

Name Easy to reuse

Description Easy to reuse actual components to create new AI players.

Priority High

Stability Stable

Necessity Medium

Table 4.37: NFR12 - Easy to reuse

4.3 Architectural design 60

4.3 Architectural design

The architectural design will be divided in three sections:

System overview:

The system context and the design will be introduced. Furthermore different
decisions, choices and assumptions will be explained according to the back-
ground, the problems and the requirements that define the scope of the project.

System context:

The system will be described from the point of view of the user interaction.
The relations with external objects will be shown and the system would be
treated like a black box.

System decomposition:

This section will show the design of the components that constitute the whole
system. The system will be specified in terms of smaller subcomponents and
the relations among them. Finally, these components will be analyzed in detail.

4.3 Architectural design 61

4.3.1 System overview

The whole system is designed to be structured as a client-server architecture as
shown in Figure 4.7. This solution offers a centralised game server which allows
players to connect to it. Furthermore, it will be implemented as a thin client

architecture, where the main functionality of the system is executed in the server.

Figure 4.7: Client/Server architecture

The idea is to develop two independent applications that will compose the whole
system: the client application and the server application. They can be executed
from the same computer or from different ones, connected to the same local network.

Client:

It corresponds to each one of the players of the game. As a thin client, it
does not perform any logic operation within the system. It just contains the
modules corresponding to the graphical user interface, the model of the world
that the player is perceiving and those modules related to the AI processing.
It only stores the relevant information to each player.

Server:

It executes the logical functionality of the game and stores the whole infor-
mation that constitutes the game state in each moment that is common for
all players. It receives the actions from the players, computes the new state
and sends the results back to the players.

The fact of having chosen a thin client architecture rather than any other possi-
bility is due to the following reasons:

4.3 Architectural design 62

Non duplication of information: Although players have different perceptions
of the world, the game status must be unique. For this reason, it seems more
suitable to centralise this information in one component, that is the server,
instead of having the same information replicated in different places.

Consistent information: In addition, the fact of having just one component
in charge of updating the status of he world for all players ensures that the
information they share is the same.

Improvement in performance: The actions and their results are executed and
calculated in a centralised component, reducing in this way the number of
operations that have to be executed and the work the client has to perform.
Furthermore, as the players are only aware of some concrete information about
the game, the server does not need to send them all the data, minimizing in
this manner, the amount of information that has to be transmitted.

Security: The fact that only some specific information is sent to the clients gives
security to the game against cheating players, as they only receive the data
they are allowed to use and it is not possible any access to extra information
related to the game in order to gain some advantage of it.

As shown in 4.8 the communication between the two modules is bidirectional:
The client has to send his actions to the server, but he also has to receive an update
of the game status from it.

Figure 4.8: Client/Server communication

4.3 Architectural design 63

It is important to notice that players should know at every moment of the
game what the current scenario is. For this reason, it is necessary that this
communication works in both ways and the status is correctly sent to the players.

This communication process is carried out in two steps, that will be repeated in
each cycle:

• Receive actions: Server lets some specific time in each cycle to receive
player’s actions.

• Send update status: Once the established time period is over, the server
sends an updated status of the game to all players (to those who have
performed some action in this turn, but also to those who haven’t).

For doing so, when the player logins, he is actually subscribing himself to the
game and offering an interface to the server in order to be notified about changes
that will occur later on. Once the sending actions period has finished, the server
will notify about the new situation to those players that are subscribed (i.e. those
who are playing).

Therefore, the sequence of steps that both, server and client, follow during the
course of the game are the following ones:

Server

1. Configuration of the game: Loads the configuration and creates the
initial game state.

2. Login into the system

• Wait for clients to login: Server receives login petitions from the
players that want to join the game and signs them up.

• Send initial state state: When the number of players reaches the
maximum allowed for the game, the server sends the initial state to
all of them.

4.3 Architectural design 64

3. Execute game: During the course of the game, three steps will be
continuously repeated until the end is reached:

• Receive actions: During the first period of each cycle, the server
receives actions from the players and stores them in a queue.

• Execute actions: The actions sent by the players are executed in
order. The preconditions are checked and if they are correct, the
effects are calculated and apply to the game status.

This step is very important and there are two things that have to be
taken into account:

– Resolve conflicts: It could happen that due to the fact
that several actions are received in the same cycle, those that
are processed later than others cannot be executed as their
preconditions are not valid anymore. In these cases, it has to be
notified to the player that his actions could not be executed and
why not.

– Compute new state: Those actions that are executed have an
impact in the state of the game, so when they are processed, the
effects that they originate are applied in order to produce the
next state. This task is centrally computed for all the players
and will be identically for all of them.

• Send new game state to players: When all actions have been
executed and the new game state has been calculated, it is sent back
to the players. As mentioned above, only that part the player can be
aware of is sent to each one of them.

Player

1. Login into the system

• Send login petition to the login server: Sends to the server his
username within the request to enter the game.

4.3 Architectural design 65

• Receive initial game state: When the game starts, he receives
the initial status of the game

2. Play the game: During the course of the game, players will repeat two
steps:

• Plan actions: According to the current status of the game in each
time, players will select an action to perform among all the possible
ones. For automatic players, decision-making algorithms choose the
most suitable action to perform depending on the game conditions.
These techniques that have been implemented are detailed later on
in section 4.5.

• Receive state of the game: Players receive the new game state
with the results of all players actions.

4.3 Architectural design 66

4.3.2 System context

The system functionality will be centralised into the server that can be connected
to several clients that can be either machines or real players.

Figure 4.9: System context

For being a client/server architecture, two important elements to define are:

• Server: Executing the correspondent processes that allow players to connect
and play the game.

• Player: It can either be:

– Human player: He will be able to play through the game interface.

– AI player: Implementation of one or more AI techniques.

As mentioned before, they are independent applications and they can run at the
same or different computers, connected through a local network.

4.3 Architectural design 67

4.3.3 Decomposition description

This section analyzes each subcomponent with a table that contains the following
information:

Type It can take two values: subsystem (independent compo-
nent) or module (concrete functionality within a subsys-
tem).

Purpose Explanation of why this component was implemented.

Function Explanation of what this component is performing in the
system.

Subordinates Subcomponents that are integrated in this component.

Dependences Interfaces that are required by this component.

Interfaces Interfaces that are supported by this component.

Processing Definition of the way it works.

Data Data that is used by this component.

Table 4.38: Decomposition analysis

Starting from the client/server architecture defined in section 4.3.1, two subcom-
ponents are obtained: client and server, that, communicate with each other.

Figure 4.10: Client/Server decomposition

4.3 Architectural design 68

1. Client

Type Subsystem

Purpose Decoupling game logical functionality from its presentation.

Function Execution of the game in local computers, presentation of the
graphical interface to real players, interaction with real play-
ers, implementation of an automatic player and connection
to the server.

Subordinates GUI Player, AI Player, Model Player, Communication.

Dependences Send action (from the player to the server).

Interfaces Send status (from the server to the player).

Processing Receiving actions from players and sending them to the
server, obtaining the status of the game, representing local
information, generating automatic plans and strategies and
updating players’ interfaces.

Data Tuples that represents the actions that players want to per-
form and data sent from the server that represents the current
situation of the game at each moment.

Table 4.39: Client component

Figure 4.11: Client subsystem

4.3 Architectural design 69

GUI Player

Type Component

Purpose Decoupling game logical functionality from its presentation.

Function Presentation of the graphical interface to real players and
interaction with real players.

Subordinates None

Dependences Update view

Interfaces Send action

Processing Receiving actions from the player and sending them to the
server and updating players’ interfaces.

Data Gets data from the model that represents the current situa-
tion of the game at each moment and extra information that
has to be shown and messages that are sent by the player and
represent the actions he wants to perform.

Table 4.40: GUI Player component

AI Player

Type Component

Purpose Decoupling the AI implementation.

Function Implementation of an automatic player.

Subordinates None

Dependences None

Interfaces Send action

Processing Generating automatic plans and strategies from the current
game state.

Data Gets data from the model that represents the current situa-
tion of the game at each moment and extra information that
has to be shown and messages that are sent by the player and
represent the actions he wants to perform.

Table 4.41: AI Player component

4.3 Architectural design 70

Model Player

Type Component

Purpose Decoupling the logic functionality of the client from the pre-
sentation.

Function Representing local information in an structured way, so it can
be understood by GUIPlayer and AIPlayer.

Subordinates None

Dependences Send action and update view.

Interfaces Send status (from the server to the player).

Processing Processes the information received from the server to update
the representation of the game state and creates the messages
to be sent to the server.

Data The client needs data that represents the current situation of
the game at each moment.

Table 4.42: Model Player component

Communication

Type Component

Purpose Decoupling player’s presentation and AI implementation of
the communication with the server

Function Providing an interface that allows the communication be-
tween the client and the server

Subordinates None

Dependences Send action (from the player to the server)

Interfaces Send status (from the server to the player)

Processing Creating of messages that are sent between client and server
in such a way that makes possible the communication

Data Information that is sent between client and server

Table 4.43: Communication component

4.3 Architectural design 71

2. Server

Type Subsystem

Purpose Decoupling game logical functionality from its presentation

Function Execution of the logic functionality of the system: create the
game and

Subordinates Login server, Proxy player, Game server

Dependences Send status (from the server to the player)

Interfaces Send action (from the player to the server)

Processing Receiving messages from the players, execute their actions,
update the game state and send it back to the players

Data Tuples that represents the actions that players want to per-
form and data sent from the server that represents the current
situation of the game at each moment

Table 4.44: Server component

Figure 4.12: Server subsystem

4.3 Architectural design 72

Login server

Type Component

Purpose Decoupling game logical functionality from its presentation

Function Executing the login process of the player into the game

Subordinates None

Dependences None

Interfaces Add player

Processing Receiving the login petition from the client and creating a
new process that will execute the proxy player

Data Information needed for the registration of the player, such as
his username, and the pid of the two processes that execute
the client and the proxy player

Table 4.45: Login server component

Proxy player

Type Component

Purpose Decoupling game logical functionality from its presentation

Function Acting as an intermediary component between the player and
the game server

Subordinates None

Dependences Send status (from the server to the player)

Interfaces Send action (from the player to the server)

Processing Receiving messages from the player and filtering the informa-
tion received from the game server before sending it to the
correspondent player

Data The data that represents the current situation of the game
at each moment and messages that are sent by and to the
player and represent

Table 4.46: Proxy Player component

4.3 Architectural design 73

Game server

Type Component

Purpose Decoupling game logical functionality from its presentation

Function Execution of logical functionality

Subordinates None

Dependences Send status (from the server to the player) and load game (to
the configuration component)

Interfaces Send action (from the player to the server) and add player
(from the login server)

Processing Executing players’ actions, resolving conflicts and updating
game status

Data Information related to the game, that includes the layout
(cell, walls and doors), elements and players’ positions and
data

Table 4.47: Game server component

Configuration

Type Component

Purpose Decoupling the configuration of the game of the rest of func-
tionalities of the server

Function Creating a new game from the configuration file

Subordinates None

Dependences None

Interfaces Load game

Processing Loading the configuration file and creating the necessary
structures to initialize the game

Data Data that defines the initial state of the game and parameters
that are used to created

Table 4.48: Configuration component

4.3 Architectural design 74

4.3.4 Complete design

As summary, it is shown the complete design of the architecture and its decompo-
sition:

Figure 4.13: Complete design

4.4 Detailed design 75

4.4 Detailed design

4.4.1 Server

Decomposition:

As mentioned above, the logic functionality is executed in the server. In this
design, it has been divided in four main modules (see Figure 4.12):

• Login server: It is only in charge of the login process. Players will
connect to it and it will inform the game server.

• Game server: It is the core of the server. It receives and processes
players’ actions. It stores the information related to the game and it
keeps the game state coherent at every time.

• Proxy server: There will be several proxies, acting each one of them as
an intermediary between each player and the game server. They are in
charge of:

– receiving the actions from the players and sending them to the server

– receiving the game status from the server and sending to each player
the information that each one is allowed to have.

• Configuration: It is in charge of loading the game configuration in
order to create a new game according to it.

Sequence diagrams:

1. Login: As it can be seen in Figure 4.14, during the login process, players
send their petitions to the login server. The latter creates a process for
each one of the players, that is the proxy player, that will connect to the
game server in order to add the player to the game. From this moment,
the player will not communicate with the login server during the course
of the game, but with the proxy server. Finally, the game server will
notify the success or failure to the player through the proxy server. Once

4.4 Detailed design 76

all the players have signed up, the game server will send the initial state
to each one of the proxy servers, and these latters will send it to each
correspondent player.

Figure 4.14: Login sequence diagram

2. Execution: In Figure 4.15, it can be seen the sequence of steps that are
carried out in each cycle in a game for two players.

Figure 4.15: Game sequence diagram

4.4 Detailed design 77

Two different phases are followed in each cycle:

• Receiving actions: Period in which players can send their actions
through their correspondent proxy servers.

• Executing actions: Game server executes players’ actions and
calculates the new state from their outcomes and sends back the
result.

4.4.2 Player

As it was shown in the architectural design (section 4.3.3), the player component
has four subcomponents: GUI Player, Model Player, Communication and AI Player.

1. GUI Player

Definition

It is in charge of the presentation of the application to the players: showing
the elements to the users and capturing the events from them in order to
perform the actions.

UML diagram

Figure 4.16: GUI player class diagram

4.4 Detailed design 78

Participants

Class Description

GUIGame Panel that acts as a container for the rest of panels.

InfoPanel Panel that shows the characteristics of the player, such as life
points.

InventoryPanel Panel that shows the elements and weapons that the player has.

MessagePanel Panel that shows the results of players’ actions and the elements
they perceive.

MyKeyListener Extends KeyAdapter class, implementing keyPressed method
in order to assign different actions to the buttons or keys for the
player to use.

Scenario Main panel of the game that shows the cells and the elements
that are situated in them.

Table 4.49: GUI Player decomposition

Sequence diagram:
When the player wants to do some action, he presses the correspondent key.
This event is handled by the class MyKeyListener and the action is sent to
the model (defined by the class Game), that will execute it. Once the model
has been updated, it will send the information about the changes to the GUI,
that will modify its components.

Figure 4.17: GUI Player sequence diagram

4.4 Detailed design 79

2. Model Player

Definition

It represents the information that the player knows about the environ-
ment. Its definition is important, as it constitutes the working memory
that will be used by the AI algorithms. Therefore, it has to represent the
game state in such a way that allows the player to extract the needed
knowledge from it.

UML diagram

Figure 4.18: Model player class diagram

4.4 Detailed design 80

Participants

Class Description

Ammunition Item that is carried by the player. It is defined by the name attribute
and the quantity represents the amount of ammunition the player
has.

Cell Each one of the squares or units of the game world that the player
is seeing at each moment.

Door Door that is situated between two cells (cell1 and cell2) and it is
observed by the player. Its state defines if it is open or closed.

Element Object that is situated in the environment and has been detected
by the player. It has an attribute type that defines what kind of
object it is.

Game Representation of the state of the game that is shown to the player.

Item Item that is carried by the player. It is defined by the type at-
tribute.

Message Extra information sent to the player

Noise Auditive signal that is perceived by the player. Its direction de-
fines where the sound comes from, its intensity represents the
energy value of the noise and the type shows what kind of sound it
corresponds to.

Player Representation of the current player: the cell where he is located,
the list of weapons, items an ammunitions he has and his life value.

Wall Wall that is situated between two cells (cell1 and cell2) and it is
observed by the player.

Weapon Weapon that is carried by the player and has been detected by
the player. It has a type (gun, knife, arch,...) and a number that
represents the ammunition it has.

Table 4.50: Model player decomposition

3. Communication

It is in charge of the communication with the server: receiving and sending
messages. It is done by using the interface JInterface1, a set of methods
that allows the communication between Java and Erlang.

1JInterface: http://erlang.org/doc/apps/jinterface/index.html

4.4 Detailed design 81

4. AI Player

Definition

Player that automatically participates in the game, deciding the best
movements to perform. This package is composed by two main classes
MyGame and MyGameGUI. The difference between them is that the latter
uses a graphical interface to show the behaviour of the player. Both of
them make use of some specific player, being this one an implementation
of MyPlayer. For this project, the player CharadePlayer has been
implemented, making use of the techniques explained in section 4.5.2.

UML diagram

Figure 4.19: Charade player class diagram

4.4 Detailed design 82

Participants

Class Description

CharadePlayer Implementation of an AI player (more information in section
4.5.2)

Goal Targets that the player has to reach.

MemoryCellAvoidWall Representation of a player’s memory: which cell he has to go
to to avoid some wall.

MemoryKeyDoor Representation of a player’s memory: which key has been
tried with which door.

MemoryLockedDoor Representation of a player’s memory: which doors have been
found locked.

MemoryThereIsElement Representation of a player’s memory: which elements have
been seen and where.

MyGame Main class that will be executed to start the application.

MyGameGUI Main class that will also show the behaviour of the player
through the application’s interface.

MyPlayer Interface that defines the methods for the automatic players.

Path Contains the list of cells that constitute the path.

Pathfinder Implementation of Dijkstra’s algorithm to find the shortest
path between two given points.

Subgoal Subtasks that compose the different goals.

Table 4.51: Charade player decomposition

4.5 Implementation 83

4.5 Implementation

In this section, more concrete details about the implementation are given. The
simulation of the perceptions and the signal propagation is explained, as well as
the assumptions that have been made and the parameters that have been taken
into account. On the other hand, the AI technique implemented is analysed and
the decision making algorithm is defined. Also, details about the communication
between server and players are given.

4.5.1 Simulation of perceptions

Perceptions constitute a very important concept for this project, as they are the only
way players have to learn about what surrounds them. They simulate how players
would perceive the environment in the most realistic way possible. As it happens in
real life, perceptions do not give complete information about what it is happening,
but it gives more or less precise and accurate data depending on agent’s abilities
and environmental conditions.

• Visual

As in real life, it is the most important perception as it will give the most
amount of information.

Characteristics:
So players are able to see the different elements in the world, there are
many lights that introduce some visibility in the game. Cells can have
their own natural light, but there are some other elements such fire or
torchs that give some extra light to the cells where they are situated and
also to the adjacent ones. In addition, torches can be lighted and put out
as well as carried by players as they are moving. In this environment,
lights are mainly characterized by their intensity. No differences of
type of light have been made, as this aspect has not been considered
important for this game. The main reason of doing that is because lights
are not so important as such, they just help players to perceive the
important elements of the game. The only thing that might be of interest
to the players is the fact that when one light is moving, they may think
that it corresponds to a torch that it is being carried by another player.

4.5 Implementation 84

Propagation:

As mentioned before, it is wanted to create the most realistic envi-
ronment as possible. For doing so, the following algorithm has been
implemented in order to perform the propagation of lights and determine
the perception of visual elements:

1. Computation of light propagations

(a) Propagation: As shown in Figure 4.20, the propagation is car-
ried out from the light focus to the four adjacent cells. Then,
from these four is propagated to the adjacent ones and continues
like this until the intensity of the light is zero and cannot be prop-
agated anymore. When propagating from one cell to another, the
intensity is reduced, but in case that there is a closed door or a
wall in between, the light is not transmitted in that direction.

Figure 4.20: Light propagation

Furthermore it is also checked that there are no blocking
elements between the light focus and each cell where it is tried
to be transmitted.

(b) Computation of new state in the scenario: After the
propagation process, the intensity of each cell is calculated.
As types of lights are not differentiated from each other, in
case of a collision of several lights, their intensities are added.
However, the final value of the intensity will always be between

4.5 Implementation 85

the minimum (0) and the maximum (9).

2. Computation of each player’s visual perception

(a) Computation of the range of vision for each player The
set of cells the player is able to see depends on his location and
the direction he is facing at.

(b) Reducing range of visionThe cells that belong to the range of
vision are filtered depending on the existence of doors, walls or
objects in between. Figure 4.21 shows an example of how cells
that are behind walls or closed doors are deleted from player’s
range of vision.

Figure 4.21: Filtering range of vision

For doing so, the idea of Bresenham’s line algorithm 2 has been
used in order to determine whether it exists or not a line that
connects two given points of the board without going through
any wall, any closed door or any object.

Figure 4.22: Bresenham’s line algorithm
2Bresenham’s line algorithm: http://www.gamedev.net/reference/articles/article767.asp/

4.5 Implementation 86

As shown in Figure 4.22, the line between the observer and the
element is computed. Then, the edges between cells (shown in
red in the picture) are checked. If any of them is either a wall or
a closed door, the cell is not within the visual range of the player.

3. Notification to the players of what they are able to see:
At this point, the set of cells that the player is able to see has been
calculated, and therefore the elements that are situated in that area is
known. However, a last process has to be performed: the perception
of the objects does not just depend on being or not in the visual field
of the player, there are several factors that have to be taken into
account:

– Illumination of the cell where the element is.

– Distance between the player and the element.

– Attenuation from the obstacles that can be in between the ob-
server and the element.

– Element’s size: Smaller objects will be more difficult to be
perceived.

Therefore, the perception of the elements will be a combination of
these four characteristics. This is done in this way because all of
them are somehow important to determine how well the element can
be perceived. For instance, a player might not see an object that
is very close to him if the area is dark. On the other hand, if it is
situated a little bit further, but there is more light and the element’s
size is bigger, the visibility will be better. So, the probability of
perceiving an element is calculated from these values in the following
way:

Probability =
light + distance + size

3
* (1- attenuation)

being:

– Light: Values from 0 (darkest) to 9 (brightest).

– Distance: Values from 0 (the element is the same cell) to the 4
(the furthest point).

– Attenuation: Values from 0 (where there are no obstacles in

4.5 Implementation 87

between) to 1(completely blocked).

– Size: It can take one of these three values: small (0.4), medium
(0.70), big (1).

When the final value is calculated, the perception will be notified to
the player. In order to make the notifications in a consistent way
and trying to be as more realistic as possible, the different elements
have been organized in a hierarchical structure based on physical
similitudes (Figure 4.23). The idea is to give more concrete and
better information of the perception (i.e. going down the hierarchical
tree) as the value that has been calculated becomes bigger.

Figure 4.23: Hierarchy of elements

In this way, if the perception of the element is low, it will only be
notified to the player whether it is a big, middle or small element. If
the perception is better, more concrete information will be given.

Perception ≥ 0.2 → nothing
0.2 <Perception < 0.5 → small/middle/big

0.5 < Perception < 0.7 → small/middle/big/figure
Perception ≥ 0.7 → key/bullet/knife/gun/..

For instance, if there is an enemy in the visual range of the player, the latter
might perceive that there is a big element at some specific location in the

4.5 Implementation 88

scenario, but he might be unaware of what it is exactly. As he gets closer,
he can get a better perception and be able to distinguish a figure. However,
he still cannot tell what the element is, as it can whether be an enemy or a
statue. However, if the player moves closer, the perception he gets is better,
being able to correctly identify what he is perceiving.

• Auditive

It is also an important way for players to learn about the environment. It helps
to realize about other player’s actions (opening or closing doors, attacking,
shouting,..) or getting extra information from places that are not within the
range of vision.

Characteristics:
In this case, three factors have been used in order to represent sounds:

– Frequency: Number of occurrences per second.

– Intensity: Amount of energy that the sound produces

– Type: Distinguishes the source of the sound. It identifies whether
is a person walking, a gunshot, a door,...

For the simulation of the game environment, the following values for these
characteristics have been assigned:

Sound Frequency Intensity

Arrow 60 10

Door 50 20

Gunshot 100 150

Shout 150 90

Steps 50 15

Table 4.52: Sound characteristics

Propagation:

In order to propagate sounds and notify players about them, the
algorithm implemented is:

4.5 Implementation 89

1. Propagation of sounds as consequence of players’ actions:
As it happened with the visual signals, there is a non-directional
propagation (fig 4.24).

Figure 4.24: Sound propagation

For each sound that is produced, it is propagated to its adjacent
cells and from these ones to the adjacent ones and so on. In contrast
to the visual signals, sounds also propagate through walls and doors,
being the attenuation bigger than between cells with no walls or
closed doors.

If the sound has to remain in time (e.g. an echo of a shout), it is
inserted into a queue, so the sound can be propagated in the next
cycle with reduced intensity.

2. Computation of new state in the scenario: As it happened
with the light propagation, more than one sound can be perceived
from the same position. In this case, a more complex simulation
has been made, as different types of auditive signals are taken into
account. Figure 4.25(a) shows how the sound from some footsteps
is perceived by the player, as he is situated very close to where they
are produced. However, in Figure 4.25(b), a gunshot is produced at
the same time and although the sound comes from a further point,
the player perceives it with higher intensity. So, it has to to be
determined whether he is able to hear both or just one of the sounds.

4.5 Implementation 90

(a) Footsteps propagation (b) Gunshot propagation

Figure 4.25: Collision of sounds

In order to solve this problem and trying to make the model as much
realistic as possible, a masking effect has been introduced. This
would happen in the real world, as we would not hear somebody’s
steps if there is a gunshot at the same time. On the other hand, it
may be possible to hear both footsteps and a door closing at the
same time.

The masking effect can be defined as the fact that auditive signals
can be masked those that present a similar frequency and have lower
intensity. So, if two sounds (A and B) are propagated to the same
point, their perception would be calculated as follows:

if similar frequencies
if A’s intensity > B’s intensity

Only A is heard
else if A’s intensity < B’s intensity

Only B is heard
else

Both are heard
else if different frequencies

Both are heard

The masking effect can be seen in Figure 4.26, in which only signal
B is masked by A. Although C has an intensity value that is lower
than B’s, as its frequency is not very similar to A’s or B’s, it is not
masked by neither of them.

4.5 Implementation 91

Figure 4.26: Masking effect

3. The new perceptions are notified to the players: Depending
on the intensity they are heard, they are notified in a different way:

– Strong: If the intensity is high, the player will be notified about
the type of noise and direction it comes from

– Normal: If the intensity is medium, only the type of sound will
be notified.

– Low: If the intensity is low, the player will only now that there
has been a sound.

• Touch

This perception has been added in order to give some extra information when
conditions for visual and auditive conditions do not let a good perception of
the environment. When a player is located in a cell, he can touch what is at
that position in order to learn what type of element it is.

4.5.2 AI techniques

1. Production system

For the development of the automatic player, a production system has been
implemented. In this section, its main characteristics are explained:

• Description

Production systems are rule-based. That means that are constituted by

4.5 Implementation 92

a set of rules composed by a set of preconditions and a set of effects.
Once the preconditions are fulfilled, the rules are activated and the
respective actions are executed. As shown in section 2.4.5, they represent
a simple way of structuring knowledge and can be similar to the human
way of thinking. For this project, the technique implemented is based in
behaviour modes, allowing the activation of some rules, but not others,
depending on the state of the player at each moment and his memory. On
the other hand, its simplicity introduces some limitations for some specific
situations. For instance, implementation of backtracking algorithms is
not allowed as they cannot be implemented within a rule-based technique.

Furthermore, it has been assumed the linearity of the problem when
trying to find the solution of this game. That means that different
subgoals that belong to the same goal must be satisfied in some specific
order. For instance, the sequence: pick up key, go to door, open door,
go to goal cell. On the other hand, different goals are independent from
each other, being possible to try to satisfy one or more at the same time.

• Decision making

The decision-making process is done as follows: once the game has
started, the goal list G contains just one goal with only one subgoal:
go to goal cell. Then, he keeps analysing the preconditions of the rules
and activating those that are fulfilled and executing the corresponding
action. The pseudocode can be expressed as follows:

G = {g0:go to goal}
if gi is empty, 0 ≤ i ≤ n

exit
else

if precondition rule1
choose actionA

else if precondition rule2
choose actionB

...

When player chooses one action to perform, he might need to update

4.5 Implementation 93

his behaviour mode or the list of goals. For instance, if the precondi-
tion see enemy is fulfilled, the player might set his mode to attack enemy.

Furthermore, the player may need to add new subgoals. For instance,
if the precondition see key is true, he would add a new subgoal:
pick up the key. In doing so, when the player wants to add new subgoals,
the list of goals is augmented as follows: for each one of the existing
goals, a new goal is created containing the subgoals of that goal and the
new subgoal. If the latter is not already included and the resulting goal
is not already in the goal’s list, it is included. The pseudo-code for this
process is the following:

being sg the new subgoal to be added in the goal list G :

∀gi ⊂ G = {g0, g1,gn−1}
if sg 6⊂ gi = {sg0, sg1,sgm−1}

new g = gi ∪ sg

if new g 6⊂ G

G = G ∪ new g

For instance, starting from the initial goal, the player might reach a
position in which he has to open a door. Therefore, a new subgoal is
created. However, it cannot be said that the new goal of the player is
just to open the door and go to the goal cell. Instead of that, player will
have two goals: the first of them would correspond to ”open the door
and get to the goal cell” and the second goal would just be ”go to the
goal cell”. This is done in this way because player might find a solution
without having to go through that door and the fact of having just one
goal would imply the player to do both things even if it is not necessary.

The following aspects are also taken into account:

– Resolving conflict set: As there might be different rules that can
be activated with the same game state, priority values have been
given to all of them. So, those that contain a higher priority will be
executed before others at same conditions.

4.5 Implementation 94

– Cell to go: A variable cellToGo is used in order to determine, in
each moment, the cell that player desires to reach. For instance, if
player’s mode is go to pick up item, it would correspond to the cell
where the item is located. In default mode it takes the value of the
goal cell.

– Achievability of goals: As it corresponds to a dynamic environ-
ment, subgoals might not be achievable at some point, so they have
to be cancelled. For instance, if the player is going to pick up some
item and then finds out that it is not where he thought because some-
body already took it, he would cancel this subgoal from his goals list.

– Replanning: Sometimes, the player can be more interested in
stopping what he is doing to change his path and pick up some item
that he suddenly sees. In order to determine if it is worthy for the
player to go to pick up weapons, ammunition or power, it has been
done by taking into account the distance to the element and its
necessity. For instance, if player has a low life value, it will consider
to go to a further point to pick up some power. On the other hand,
it will not do it if his life value is much bigger, as he would only
move to a closer point.

– Randomness: There are some situations in which the player has
to take some random action as he does not know which action
should perform better with the information he owns. In order to
avoid situations in which the player moves around the same cells
for several cycles, a closed list that contains the last visited cells is
used. So, the random movement is limited only to new cells that the
player has not recently visited.

Sometimes, the fact of acting randomly can be the most rational
thing to do. Even if a human player was playing, he would end up
performing random actions at some points. On the other hand, the
necessity of including this randomness in player’s behaviour is due
to the inefficiency of production systems for particular environments.

4.5 Implementation 95

• Elements

Two important elements have been defined:

– Working memory

It is represented by the classes of the model package (see section
4.4.2). It represents information related to the elements that the
player percieves around the game but also those items he owns. Few
examples of these statements are the following:

∗ is there element (t): Indicates if there is an element of type
”t” in player’s position.

∗ has ammunition(w): Tells whether the weapon ”w” is loaded or
not.

∗ is door closed (d): Determines if the door ”d” is closed or not.

∗ has picked up (i): Indicates if the player has just picked up
an item ”i”.

– Rules

The following rules have been implemented:

∗ if mode attack and has ammunition then attack

∗ if mode go to goal then move

∗ if has empty weapon and has ammunition then reload weapon

∗ if there is element then pickup

∗ if has torch and torch is off and in front of fire then use torch

∗ if (mode default or mode random or mode avoid walls) and
see weapon that needs then go to pick up weapon

4.5 Implementation 96

∗ if (mode default or mode random or mode avoid walls) and
see power that needs then go to pick up power

∗ if (mode default or mode random or mode avoid walls) and
see ammunition that needs then go to pick up ammunition

∗ if follows path and subgoal still possible then move

∗ if (mode find key or ((mode random or mode default) and
has subgoal(find key))) and remembers key then go to pick it

up

∗ if (mode find key or ((mode random or mode default) and
has subgoal(find key))) and remembers small element then go

to pick it up

∗ if not mode unlock door and door is closed then open door

∗ if mode unlock door and has key to try then use key

∗ if mode default and goal is at(dir) and player is at(dir) then
move

∗ if mode default and goal is at(dir) and not player is at(dir) then
turn

• Player’s behaviour

There are three main concepts that define the behaviour of the player:

– Subgoal: Single and concrete purpose of the game. The following
have been designed:

∗ Go to goal cell : Reach the final cell of the game.

∗ Open door : The player has determined that need to open a
door to continue his way.

4.5 Implementation 97

∗ Find key : The player has learnt he needs to find a key to open
a particular door.

∗ Pick up item: He needs an specific item from a known location.

∗ Avoid wall : He has to avoid some wall that is on his way.

∗ Go to cell : Reach some specific cell of the scenario.

The most important one is ”go to goal cell” as once the player
has achieve it, he wins the game. The rest of them are used as
landmarks, that is, intermediate goals that have to be fulfilled
meanwhile he tries to find the solution.

– Goal: Combination of different subgoals that lead to the solution
of the game. For instance: ”pick up key, open door and go to goal”.
Each goal is composed by a stack of subgoals, in which the last ones
must be the first ones to be achieved. Different subgoals are inserted
and deleted when they are created and achieved, respectively. Each
goal represents a way to achieve the final purpose of the game, but
with different subgoals appearing on the way.

– Modes: They represent the current behaviour of the player at
each moment. While he can have several goals at the same time,
his behaviour mode is just one. This concept has been introduced
in order to avoid problems when trying to resolve more than one
subgoal at the same time.

∗ Default : Player continues getting closer to the cell cellToGo.

∗ Go to goal : Once the player is able to see the goal cell and has
found a path to get to it, he starts moving towards it.

∗ Unlock door : Player enters this mode when he finds out that the
door he wants to open is locked, so he starts trying to unlock it

4.5 Implementation 98

with all the keys he has. Once he has tried with all of them, he
enters the mode find key. If the door is unlocked, the mode is
set to default again.

∗ Find key : Player tries to find a key around him or remember if
he has seen any before. In those cases, the mode is set to go to
pick up item.

∗ Go to pick up item: Player has decided to pick up some specific
item.

∗ Attack enemy : The player enters this mode when he has been
attacked or has seen some enemy closer and has ammunition to
attack him.

∗ Avoid wall : The player has found a wall on his way, so he is set
to this mode in order to find a way to avoid it. The way that this
process has been implemented is explained later on in this section.

In this way, a player might have two different subgoals to achieve:
pick up key, go to cell goal, but as he cannot do both things at
the same time. The behaviour mode will define the action he is
performing at the moment.

In order to choose the next behaviour mode, the list of goals is
checked. For instance, if a key is picked up and the player has a
subgoal which type is ”open door”, the new behaviour mode will be
”going to the cell where the door is located” and then it will probably
change to ”unlock door”.

Furthermore, some modes are more important than others. For
example, if player’s mode is pick up an item, but he is suddenly
attacked by another player, his mode will be set to attack enemy.
This will not happen on the other way around: if the player is
decided to attack one of his enemies, he will not stop attacking his
enemies because he has found something to pick up. The same

4.5 Implementation 99

happens with the go to goal cell mode. When is set into this mode,
he will not stop in order to open some door or pick up something,
because if he is in go to goal cell mode is because he is following the
right path to win the game.

2. Other implemented techniques

(a) Pathfinding

Due to the fact that player has incomplete information about the
environment, he cannot always compute a path to the cell he wants
to go. So, the best he can do, as he knows his position and the cell
he’s going to, is moving towards it. However, when he gets closer
and this cell gets inside his range of vision, he is able to determine
the best path to get to it. For doing so, Dijkstra’s algorithm has
been implemented. Starting from the position where the player is, he
tries to find the shortest path to the destination, taking into account
the obstacles that exist on his way. If a path is found, the cells that
compose it are stored in a list called cellsToFollow, so the player can
make the movements following the chosen path. Dijkstra’s algorithm
has been chosen for this process because the range of possible cells is
so reduced, that Dijkstra’s implementation has been considered sufficient.

(b) Player’s memory

Player needs to make use of knowledge that he is learning through the
game’s course. It might be useful for him to remember where he found
a key, a weapon or a power because they can be useful for him later on.
It is also important to take note of when it happened, as it is needed
in order to determine whether the fact is more likely to continue being
true. For this reason, several game facts are going to be stored and some
of them will also include the time label in which they are produced. In
other cases, it will not be necessary. For instance, if the player learns
that a key does not unlock one specific door, it does not matter when he
finds out, as it will not stop being true.

4.5 Implementation 100

The following situations are stored in player’s memory:

• There is an element: Player remember where the element was
and the moment in which he saw it. For doing so, the next tuple is
stored:{element,x,y,time}. These memories are updated when they
are perceived again.

• The door is locked. As doors might seem always closed for the
player, the latter has to remember whether the formers are closed
or locked. In doing so, when player tries to open the door and
finds out it is locked, he stores this fact in his memory. As the
door can be unlocked by any player, this fact can change, being
important to remember the moment in which the player learnt
about the locked door. So, the next tuple is stored:{door,time},
representing the door that is locked and the moment it was found out.

• The key does not unlock the door: Each time the player tries
to use a key to unlock a door, the next tuple is stored:{key, door}.
In this case, the time is not stored, as it a key does not open a door,
it will never do.

• Way to avoid a wall: The player remembers possible escape ways
for possible situations in which he must avoid a wall that finds on
his way. In Figure 4.27(a), player is walking to the right part of the
board and he perceives a wall further on his way. At that moment,
as it can be seen in 4.27(b), he looks for a possible way to avoid this
wall and stores this information in his memory. In case he reaches
that wall, as he does not how to continue, he has to remember the
way he learnt before (Figures 4.27(c) and 4.27(d)).

4.5 Implementation 101

(a) Player sees a wall in

front

(b) Player detects a way to

avoid it

(c) Player reaches wall (d) Player remembers

what he learnt

Figure 4.27: Avoiding walls

4.5.3 Messages

In order to establish the communication, both, server and client, exchange messages.
They are formed by tuples and lists that contains the information that is transmitted.
Tuples are inserted into ”{ }” and lists into ”[]”. Two types are distinguished: those
messages that are sent from the client to the server and vice versa.

• From client to server As clients are implemented in Java, they make use of
the JInterface package and send the data to the server as tuples, that are
instances of the class OtpErlang. Clients need to create two types of tuples:
one for the login process and another when sending his action to the server.

– Sending login petition When player wants to connect to the game, he
has to send this tuple:

∗ login: {login, username}

– Sending action When players want to send their actions to the server,
they use the same structure for all the different actions: {do username

4.5 Implementation 102

action} where username is replaced by his username and action cor-
responds to a tuple whose structure will depend on the action that is sent:

∗ attack: {attack, weapon,direction }
where weapon represents the weapon that is used to attack and
direction the direction of the attack.

∗ close door: {closeDoor}

∗ move: {move, x,y}
where x and y represent the cell where the player is moving to.

∗ open door: {openDoor}

∗ pickup: {pickup}

∗ reload: {reload, weapon}
where weapon represents the weapon that is reloaded

∗ shout: {shout}

∗ touch: {touch}

∗ turn: {turn}

∗ use object: {use, item}
where item represents the item that is used

• From server to client

– Confirmation messages: They are sent to the player in order to notify
whether it correctly received or not the message from the him.

∗ ok: {ok, message}

4.5 Implementation 103

∗ error: {error, message}
where message gives more detailed information about server’s
response.

– Sending status: When server sends the game state to the players, it
just sends a tuple of tuples as follows:

{Message, PlayerInfo, Walls, Doors, Cells, Elements, Noise, HasItems,
HasWeapons, Lights,TemporalElements,Messages}
where:

∗ Message: Represents the state of the game. It can be whether status
to indicate that the game state is being sent or endgame to specify
the game has finished.

∗ PlayerInfo: [x,y,life,direction]
where x and y represent the current location of the player, life is the
current life value and direction is where the player is looking (up,
down, left, right).

∗ Walls: {x1, y1, x2, y2}
where (x1,y1) and (x2,y2) represent the cells that are separated by
the wall.

∗ Doors: {{x1, y1, x2, y2}, {state,material}}
where (x1,y1) and (x2,y2) represent the cells that are separated by
the door, state is the current situation of the door(closed, locked or
open) and material is the material of the door (wood or metal).

∗ Cells: {{x,y}, material, light}
where x and y represent its coordinates, material is the type of
floor (sand, wood or stone) and light is the amount of light in that cell.

∗ Elements: {x, y, type}
where x and y represents the cell where the element is located and
type defines which kind of element it is (see Figure 4.23).

4.5 Implementation 104

∗ Noise: {{x,y}, {type, ownNoise,{fromx,fromy}}}
where x and y represent the coordinates of the cell where the noise
is heard, type indicates which kind of noise it is (footsteps, gunshot,
shout,...), ownNoise indicates whether the noise has been made by
this player or not (taking ”true” and ”false” values respectively) and
fromx and fromy show the direction the noise is coming from.

∗ HasItems: [{{name},type, info}]
where name is the name that identifies the item, type defines which
kind of object it is (key, torch,..) and info gives more detailes about
it when necessary (in case of the torch, indicates whether is ”on” or
”off”).

∗ HasWeapons: [{{name},type,ammo}]
where name is the identifier of the weapon, type defines which
weapon it is (gun, arch or knife) and ammo indicates the ammuni-
tion of that weapon (in case of knifes, it is represented as the string
inf).

∗ Lights: [{{x,y},intensity}]
where x and y represent the coordinates of the cell and intensity is
the amount of light that is added that cell.

∗ TemporalElements: [{x,y,type,info}]
where x and y represents the cell where the element is located, type
defines which kind of element it is (footsteps, smoke,..) and info
gives more details about it.

∗ Messages: message
where message contains the extra information corresponding to the
result of the last action.

4.6 Summary 105

4.6 Summary

In this section, the proposed game has been defined, as well as its characteristics
and problems to be solved. The different elements of the game have been described,
as well as the different actions that can be performed by the players.

Furthermore, the architecture of the system has been been described. As it was
said, it corresponds to a client/server solution in which both parts are independent
from each other and are executed separately. In this section, the description of the
different components that constitute both subsystems has also been made

Also, a more detailed design of the implemented solution has been made,
showing more concrete elements of the components that were defined before. The
different elements and their interactions have been analysed by using UML class
diagrams and sequence diagrams respectively.

As a very important part of this section, the development of the system and the
implementation of the AI techniques that have been chosen have been described.
First of all, the way in which perceptions are simulated has been explained: the
algorithm that has been implemented, as well as the parameters that have been
used for it. Moreover, the production system that has been implemented for the AI
player has been also defined, explaining how the algorithm works and the aspects
that have been taken into account for its implementation.

In next section, different experiments will be performed in order to test the
efficiency of these implementations.

Chapter 5

Experimentation and results

Once the development process has been detailed, in this section a study of the
performance is made. For doing so, a few games are executed, facing an automatic
player that has been implemented by using the AI techniques explained in section
4.5 against simple automatic players and human players.

For the evaluation of the whole system, two different studies have been made:

• Performance of the game

As the system’s implementation is an important part of this project, its
performance will be tested. Aspects like time to execute players’ actions or
time to update the game state are analysed in this section.

• Intelligence of the automatic players

The AI techniques that have been implemented for this project are evaluated
in this section, analysing their performance and suitability for this domain.

For the experimentation, the server is going to be executed in an Intel Core 2
Duo, 2GHz and 2 GB of memory. Players will execute the application from the
same computer and from a different one, but connected to the local network.

For the experimental process, different scenarios are defined and several games
are executed in each one of them. Different tables and graphs will gather the
parameters and results that are obtained in them.

5.1 Experiments 107

5.1 Experiments

In this section, the different experiments used to test the performance of the system
and the efficiency of the AI technique are defined. The parameters needed and the
results obtained from each one of the experiments are also shown and analysed.

1. Game’s performance

In order to evaluate the game’s performance, these parameters have been used:

• Board’s size (width × height): Number of cells that the board contains.

• Number of players that are participating in the game.

• Number of items than can be picked up by the players.

The following aspects have been measured:

• Initialization: Configuration of the elements of the game and struc-
turation and initialization of the information. It includes the initial
propagation of the lights (such as fires or torches) and it is done once at
the beginning of each game, before it has started.

• Actions execution: Process that calculates the next state of the game
by executing player’s actions, including signal propagations for those
actions requiring it.

• Status sending: Period in which the server sends the new game state
to all players.

• Total: Time in execute player’s actions and return the new state to the
players. It includes the two previous operations (actions execution and
status sending), as well as some other checking operations.

For doing the different experiments, several games are going to be simulated
combining the different parameters: board’s size, number of players and num-
ber of items. Simple players that execute a random action in each cycle will

5.1 Experiments 108

be used for this purpose. The idea is to maximize the number of actions in
each cycle, so the worst time for each one of the cases is obtained. Each con-
figuration will run for 100 cycles, measuring the time for each specific task and
calculating the average of them all.

Results

The following table shows the results that have obtained from the
different simulations, in which all parts involved (server and players)
have been executed from the same computer:

Size Players Items Init. (ms) Exec. (ms) Sending (ms) Total (ms)

15x15 2 10 289,60 1,26 1,31 2,97

15x15 4 10 222,78 1,83 2,10 4,15

15x15 8 10 301,12 4,02 5,30 9,54

20x20 4 20 329,86 1,42 1,61 3,25

20x20 8 20 365,16 5,52 3,65 9,42

40x40 8 30 860,91 4,50 7,9 12,64

40x40 12 30 968,64 5,00 9,03 14,26

60x60 8 50 926,48 5,96 5,66 11,97

60x60 12 50 1.034,00 6,20 6,16 12,60

80x80 8 75 1.625,43 7,37 5,25 12,91

80x80 12 75 1.721,91 15,67 8,22 27,87

80x80 16 75 1.801,11 526,78 48,77 667,66

100x100 12 100 1.863,44 708,78 75,46 923,75

100x100 16 100 1.832,78 1.016,88 155,95 1.294,31

100x100 20 100 1.933,12 878,25 254,67 1.388,94

Table 5.1: Server’s performance

2. AI techniques

In order to evaluate the performance of the implemented automatic player,
several games have been executed. The experiments have been divided into
two categories: Single mode and Normal mode. The former consists on
executing just the automatic player in some specific scenario in order to
check its behaviour and the latter faces the automatic player against simple
automatic players and human players to compare their efficiency.

5.1 Experiments 109

In order to make this evaluation, the number of actions that are per-
formed will be analysed and in some cases, the players’ life values will be
also taken into account in order to determine their behaviour and performance.

(a) Single mode

i. Configuration 1

Domain definition

For this first domain, a simple scenario is created, in which only
one door is locked, but the key that opens it is situated very
close to it. Next picture shows the scenario that has been used,
where the locked door is shown in red and closed ones in orange:

Figure 5.1: Single mode - Configuration experiment 1

Results

This game has been executed several times, but the number of
actions has remained constant in all of them. It has been 61 the
number of steps needed to achieve the goal. For all games, the

5.1 Experiments 110

same sequence of actions has been carried out.

Furthermore, the initial position of the player has been changed
for a second test, facing him to the cell that is below him.
This fact has reduced the number of actions to 41, being kept
constant and repeating the same sequence of actions in all the
cases that has been executed. This change is due to the fact
that for the second case, player starts walking to the cells that
are located below him, achieving his goal in less number of steps
as he does not find a locked door on his way.

ii. Configuration 2

Domain definition

The domain that has been used for the second configuration is a
little bit more complex, as it can be seen in the next picture:

Figure 5.2: Single mode - Configuration experiment 2

In this case, the number of cells and rooms is larger and there are
three locked doors that must be opened using the corresponding

5.1 Experiments 111

keys.

Results

A total of 20 games have been played by the automatic player.
Contrary to what happened in the previous configuration, differ-
ent results have been obtained for each game. The next graph
shows the number of actions that have been needed to reach the
goal for each one of the cases. The green line represents the
average.

Figure 5.3: Single mode - Results of configuration 2

The differences between the games’ results are due to the exis-
tence of some randomness in player’s behaviour. This makes him
to go to different areas of the scenario, needing to perform more
or less number of actions depending on what he is perceiving at
each moment and the obstacles he is finding on his way. No big
differences between the results are appreciated, but this can be
due to the simplicity of the game, that does not allow the player
to go much further before finding a way to reach the solution.

(b) Normal mode

In this mode, the automatic player has competed against a simple
automatic player and a also against a human player. For doing the
experiments, four different people have played. For each one of the
configurations, each human player has played three times. That means

5.1 Experiments 112

that a total of 12 games have been played in each scenario. It has decided
to test with several people in order to get a wider variety of results and
also to avoid human players to remember the scenario of the game and
therefore take advantage over the automatic player. Moreover, for each
game, the starting points of the players were rotating in order not to
play the exact game twice and also to give the same chances to all players.

i. Configuration 1

Domain definition

The domain for the first game is very simple. It contains few
elements to be picked up and only four rooms without locked
doors. The challenge is just to find the path to get to the goal,
avoiding obstacles and walls on the way. Figure 5.4 shows a
screenshot of the initial state of this scenario, where the three
characters represent the initial position of the players and the
direction they are facing and the orange elements correspond to
the closed (but unlocked) doors.

Figure 5.4: Normal mode - Configuration experiment 1

5.1 Experiments 113

Results

Table 5.2 shows the results of the twelve played games. Each cell
represents the number of actions that each one (AI player, simple
player and human player) has taken. The columns indicate the
number of the game and the human player (players a, b, c or d)
that has participated. Those results in boldface represent the
winner of each game.

Player a Player b Player c Player d

1 2 3 1 2 3 1 2 3 1 2 3

AIPlayer 26 30 22 28 26 26 28 26 30 31 26 30

SimplePlayer 27 31 22 29 27 21 30 27 31 32 27 30

Human player 26 29 21 44 34 28 29 26 30 31 22 35

Table 5.2: Normal mode (Configuration 1) - Results

For all the games, players have finished with the same life values
as they started, that is 100 points. It has been observed during
the experiments that human players tended to discover what
they had around them while the automatic player kept following
a path to achieve the goal. As there were no interactions between
players (attacking or blocking each other) and the solution was
pretty straight forward, the AI player managed to win most of
the games. It also has to be noted, that those games that the
automatic player lost were the third time that human players (a,
b and d) were playing. This could have been helped by the fact
that players had gained some experience from the two previous
games. These results can be summarized in the following table:

Player Winning games Average of actions

AIPlayer 9 27,42

SimplePlayer 0 27,83

Human player 3 29,58

Table 5.3: Normal mode (Configuration 1) - Summary

5.1 Experiments 114

It can be seen that, although the automatic player has won a
higher number of games, the human player has performed a
higher number of actions. This could be due to the fact that,
as said above, human players tended to go around the scenario,
analysing the different ways to go and on the other hand, every
action the automatic player took was carrying him closer to the
goal.

ii. Configuration 2

Domain definition

The domain in this case is a little bit more complex, as the
number of rooms is higher, and also the number of weapons and
ammunitions. Figure 5.5 shows a screenshot.

Figure 5.5: Normal mode - Configuration experiment 2

Results

The results that have been obtained from the twelve games are
shown in the next table, where as shown before, each cell repre-
sents the number of actions of each player and those results in
boldface represent the winner of each game:

5.1 Experiments 115

Player a Player b Player c Player d

1 2 3 1 2 3 1 2 3 1 2 3

AIPlayer * 57 * 90 * 75 57 72 73 81 54 72

SimplePlayer 59 40 71 83 73 76 58 69 * 79 52 72

Human player 81 53 91 103 110 94 60 52 75 62 47 64

Table 5.4: Normal mode (Configuration 2) - Results

Those cells that contains ”*” represent those cases in which the
player has lost all his life points and therefore, the number of
actions has not been taken into account for the calculations.
It can be observed that three out of the nine times that the
automatic player lost have been due to being attacked by the
enemies. It is worth noting the difference between the number of
actions in the different games. In case of the automatic player,
this can be due to the existence of some modifications in the
environment that led the player to change his path and therefore,
take a higher number of actions. On the other hand, in case of
the human player, it can be due to differences in players’ abilities.

Another important issue is the fact that the AI player has lost
all his life points in three out of the twelve games, while this has
not happened to he human player in any of the games.

A summary of the results of this configuration is shown in the
following table:

Player Winning games Average of actions

AIPlayer 3 70,11

SimplePlayer 0 66,55

Human player 9 74,33

Table 5.5: Normal mode (Configuration 2) - Summary

The number of actions of the human player is also higher than
the number of actions needed by the AI player, but in this case
the difference has been bigger.

5.1 Experiments 116

iii. Configuration 3

Domain definition

The next domain is more complex, having added some locked
doors and the corresponding keys to open them. A higher number
of weapons, elements that can be picked up and obstacles have
been inserted in order to introduce a bigger challenge in the game.

Figure 5.6 shows the scenario that has been used, representing
with red those doors that are locked and with orange those that
are closed.

Figure 5.6: Normal mode - Configuration experiment 3

Results

Table 5.6 shows the results of the different games played for this
configuration:

5.1 Experiments 117

Player a Player b Player c Player d

1 2 3 1 2 3 1 2 3 1 2 3

AIPlayer 55 80 65 92 108 70 73 110 84 62 116 65

SimplePlayer 57 53 58 73 94 71 60 74 72 63 117 66

Human player 40 70 46 97 103 80 59 98 69 59 109 64

Table 5.6: Normal mode (Configuration 3) - Results

In this game, the number of actions has been a little bit higher,
compared to the two previous examples. This is due to the
higher complexity of the problem. However, the difference
between the number of actions between different games in this
configuration is also bigger. This can be caused by the fact of
the automatic player needing to perform more random actions,
as there is no a straight forward path to the goal cell. It can also
be noted that automatic player tends to need more steps for the
second game of each human player.

Player Winning games Average of actions

AIPlayer 10 81,67

SimplePlayer 0 71,50

Human player 2 74,50

Table 5.7: Normal mode (Configuration 3) - Summary

Contrary to what happened in the two previous configurations,
in this case the average of actions that are needed by the AI
player is much higher than the number of actions performed
by the different human players. However, he still gets better
results, as he has managed to win 10 out of 12 games under this
configuration.

5.2 Results 118

5.2 Results

1. Game’s performance

In table 5.1, it can be seen the good performance of the server. The task that
needs most time is the initialization, but it only takes almost 2 seconds for a
100x100 scenario. As it is only executed once, before the game has started it
has been considered that it is reasonable and adequate time.

In order to create a continuous game, players should not notice the existence
of different cycles of execution. For this reason, the time of receiving actions
and sending back the results should not take too long. It has been determined
that this time should not exceed 500 ms. For this reason, the maximum size
that can be accepted is 80×80 with 8 games, as it maintains low time values.

2. AI techniques

The results of the automatic player in the single mode games show some of
the advantages and deficiencies of the production systems.

In the first example, it is proved that player can find a good solution to reach
the final goal. On the other hand, it can be observed, that for the same
scenario, with the same information, the player will always act in the same
way, being totally predictable for similar situations.

In the second game, it can be seen how the player is able to deal with
situations in which the uncertainty is higher (for instance, when he reaches
a wall and has to go around to find a way to avoid it), but his efficiency
depends on how lucky he is when performing random actions. However, this
would also happen to a human player, when he finds some problem and has
to move around until he finds a way to solve it.

Despite of having implemented a simple AI technique, its results against
human players are competitive. In the first example, corresponding to a
simple domain, the goal has been achieved in a quite straight forward way,
obtaining good results in most of the games.

5.2 Results 119

In the second game, there have been more problems. This can be due to a
bigger interaction between players, creating a very dynamic environment in
which the AI player did not know how to react.

In the third game, he has obtained good results, even though the domain was
more complex, having to avoid more number of walls, obstacles and locked
doors.

The next diagram shows the number of games that each automatic and hu-
man players have won in each of the three scenarios that have been used for
experimentation:

Figure 5.7: Summary - Results

In summary, despite of the simplicity of the technique, it has obtained good
results, mainly in the first and third configuration, in which has won most of
the games.

Chapter 6

Conclusions and future work

This section presents the conclusions obtained after this project’s development, as
well as a list of lines of future research.

6.1 Conclusions

One of the main characteristics of the game developed for this project is the fact
that it contains a huge amount of incomplete and imprecise information. Players
have to discover the scenario as they interact with it, receiving the information
by their perceptions. Furthermore, this knowledge might not be very accurate, as
it depends on several factors such as light, distance, obstacles,...(as explained in
section 4.5) in case of the visual perception. So, players need to be able to deal
with imperfect and incomplete data in order to choose the best action to perform.

It also has been very important for its proper performance the periodic update
of information, so players know at each moment the correct state of the game in
order to try to make the best action as possible according to it. For this reason,
the server has to keep sending the current status of the game and cannot take too
long in doing it.

Few simplifications have been made:

• Dealing with temporal information. It has been determined that it is not
important to remember everything that the player is perceiving at each
moment: some might not be relevant to be remembered (such as fire or stat-
ues’ locations) and some could be very dynamic, such as the enemies’ situation.

6.1 Conclusions 121

• Dealing with uncertain situations. At some points of the game, the player
has to perform a random action. Sometimes it can be the best thing to
do, but some other times it is due to the inefficiency of the production systems.

In summary, the system implemented can be described as:

• Portable system: A multiplatform system has been developed. Both, server
and client, can run in any of the different operative systems.

• Expandable system: It can be very easy to add new automatic players, just
by implementing the AIPlayer and GUIPlayer interfaces as it is explained
in Appendix A.4 and also to add new elements and functionalities to the game.

• System’s performance: According to the results obtained in section 5.1, the
performance of the server is quite good. It takes an appropriate amount of
time to perform the different operations in each cycle. On the other hand,
the interface implemented for the players is not very optimal, as it takes too
long to refresh. However, this fact has not been taken into account for the
development of this project, as it corresponds only to a prototype, being the
game’s engine the most important part.

• Parallel execution: The task of filtering the information to be sent to the
players is done in different processes, one for each player, being each one of
them completely independent from the rest.

• Realistic environment: Visual and auditive propagations have been imple-
mented in a simple, but the most realistic possible way.

On the other hand, a minimally competitive agent has also been created.
Implemented as explained in section 4.5.2, it corresponds to a simple technique that
deals with the information that receives from the server and is able to determine
the next action to take according to the current game state. It shall be mentioned

6.2 Future work 122

that the player has obtained good results for the experiments, as it has managed to
win 61% of the games against human players.

One important aspect on player’s functionality has been the way of dealing
with multiple goals and subgoals and also the fact of setting the current behaviour
mode once a subgoal was achieved. Lineality was assumed in this case in order to
simplify the process of goal selection.

In summary, production systems constitute a simple AI technique that can deal
with many of the situations that have appeared during the experiments. However,
they might not be the most suitable technique for a domain like this one, which can
be very dynamic and due to production systems’ deficiencies (not very fast to react
and response to sudden events, completely predictable, very deterministic and not
very easy to expand) can be difficult to handle.

6.2 Future work

In this section, a few ideas or guides that can be used to extend and improve this
work are going to be given:

System implementation

For this project, a protoype has been implemented, but there are many aspects
that can be added or improved:

• Creation of new elements, including new weapons, new items that can
be used, etc

• Adding new characteristics to the players, such as strength, speed or
stealth.

• Improvement of the interface. For this prototype, AWT has been used,
but a better one should be used for a proper version of the game as it
can get very slowly.

6.2 Future work 123

AI implementation

The creation of a player for this domain can include many different aspects
and their implementation was out of the scope of this project, as it had to be
simplified.

For this reason, there are many lines that can be followed to improve the
performance of the player. Some of them can be:

• Planification: Improvement of the way that goals and subgoals are
handled and implementation of a proper planner algorithm.

• Adversarial search: Instead of acting just to achieve their personal
goal, players can realize that in fact they are competing against other
players and therefore, try to prevent them from wining the game.

• Time inference: It can be taken into account the time in which past
events happened in order to determine the credibility of the facts that
the player has stored in memory.

• Handling uncertainty : Development of a more sophisticated proba-
bilistic method of reasoning.

Chapter 7

Planification and budget

In this section, the planification of the development of this project is analysed. For
doing so, the initial planification is shown and subsequently compared to the real
evolution of the development of this project, pointing out those aspects that were
not carried out within the expectations. Finally, an economical anlysis is made.

7.1 Planification

This is an analysis of the tasks that have been performed, their time distribution
and the comparison between their real development and the initial one. In doing
so, Gantt’s diagrams have been used to show the time periods for each one of the
following tasks:

1. Game definition and design: Definition of the problem to solve: the sce-
nario, the elements and the characteristics of the game

2. Game implementation: Development of both, server and client, applica-
tions. It involves the implementation of the different components of each one
and the communication between them.

3. Game testing: During this process, the system’s implementation is checked,
detecting if there is any error or anything that could be improved. Different
domains are tested to check the existence of errors and prove that the objectives
have been fulfilled.

4. AI techniques research: Study of the existing technologies that solve similar
problems and their suitability for the domain to be solved.

7.1 Planification 125

5. AI techniques implementation: Development of the AI techniques that
have been chosen.

6. AI testing: Comprobation of the AI technique efficiency in order to detect
errors or features that could be improved.

7. Experimentation: Study of the performance of the system’s performance
and the efficiency of the AI techniques that has been developed. It includes
the definition of the different domains to be used and the correspondent tests
of each one of them.

8. Documentation: Composition of this document.

9. Presentation Preparation of presentation of this project.

It is worth noting that the methodology followed has been based on evolutionary
prototypes. Therefore the initial idea has been the repetition of the steps 1, 2 and
3, obtaining as a result of them an incremented prototype, that could be fixed or
extended in next iterations. That is the reason why, for the initial planification,
these three steps seem to be carried out at the same time. Furthermore, the imple-
mentation of the AI techniques is also executed along with the testing process (step
6).

7.1.1 Initial planification

Id Name Duration Start date End date

1 Game definition and design 4 weeks 01/12/2009 31/12/2009

2 Game implementation 8 weeks 01/01/2010 28/02/2010

3 Game testing 2 weeks 15/02/2010 07/03/2010

4 AI techniques research 2 weeks 08/03/2010 21/03/2010

5 AI techniques implementation 6 weeks 22/03/2010 07/05/2010

6 AI testing 2 weeks 01/05/2010 14/05/2010

7 Experimentation 1 week 15/05/2010 21/05/2010

8 Documentation 7 weeks 07/05/2010 30/06/2010

9 Presentation 2 weeks 01/07/2010 15/07/2010

Table 7.1: Initial planification

7.1 Planification 126

Figure 7.1: Initial planification diagram

7.1.2 Real planification

Id Name Duration Start date End date

1 Game definition and design 6 weeks 01/12/2009 14/01/2009

2 Game implementation 12 weeks 15/01/2010 15/04/2010

3 Game testing 3 weeks 01/04/2010 21/04/2010

4 AI techniques research 2 weeks 22/04/2010 07/05/2010

5 AI techniques implementation 4 weeks 08/05/2010 07/06/2010

6 AI testing 2 weeks 01/06/2010 14/06/2010

7 Experimentation 2 weeks 15/06/2010 30/06/2010

8 Documentation 14 weeks 01/04/2010 15/07/2010

9 Presentation 2 weeks 07/07/2010 21/07/2010

Table 7.2: Real planification

Figure 7.2: Real planification diagram

The development of this project has changed considerably from the initial planifi-
cation. The implementation of the game required much more time that expected.
However, the implementation of the AI techniques did not take as much time as
it was thought in the beginning. Furthermore, the composition of this document

7.2 Technical equipment 127

started before planned, needing less time at the end of the project development.

7.2 Technical equipment

In this section, different resources, software as well as hardware, that have been used
for the development of this project are detailed.

7.2.1 Hardware

• Macbook 2 Ghz Intel Core 2 Duo, 2GB DDR3 RAM

• PC 2,2 Ghz, 3Gb RAM

7.2.2 Software

• Operative Systems:

– Microsoft R© Windows XP

– Apple R© Mac
TM

OS X Leopard

• Programming environment:

– Eclipse
TM

Ganymede (The Eclipse Foundation)

• Programming language:

– Java
TM

(Sun Microsystems)

– Erlang

• Additional libraries:

– JInterface

• Text processor:

– TeXshop

• Diagrams and figures:

– OmniGraffle
TM

Professional (TheOmniGroup R©)

– GIMP
TM

– OpenProj
TM

7.3 Economical analysis 128

• Presentation:

– Apple R© Keynote
TM

09

7.3 Economical analysis

This sections presents an economical analysis of this project, presenting a comparison
between the initial estimation and the initial one.

7.3.1 Methodology

In order to calculate the costs of this project, the resources are divided in three
groups:

• Human resources: Personal costs will be calculated taking as reference for
the salaries the studied done by Hays Group, whose results have been provided
by ”Asociación de Ingenieros e Ingenieros Técnicos en Informática” [1].

• Hardware resources: In order to make an estimation of the cost of the
hardware components that have been used, it will be done by taking into
account the cost of the acquisition of the material, its estimated useful life and
the time that has been used for this project.

• Software resources: As it happened with hardware resources, the acquisition
cost of the licenses, the useful life and the time that has been used will taken
into account.

7.3.2 Estimated cost

1. Human resources

Although this project has been developed by one person, it has been also
taken into account the job of supervision carried out by the supervisors, that
will be considered as the 5% of the development time. For the latter, it has
been considered two different work timetables: during the first four months,
20 hours per week were devoted for this project and during the second four
months, it was increased up to 40 hours per week.

7.3 Economical analysis 129

Person Estimated hours Cost (euros/hour) Total cost

Developer 960 17,32 16.627,20

Supervision 48 24,35 1.168,80

Total 17.796 e

Table 7.3: Estimated human resources costs

2. Hardware resources

Next table shows the cost of the hardware used for this project (see section
7.2.1):

Resource Cost(e)
Estimated useful

life (months)

Estimated use in the

project (months)

Cost for the

project

Macbook 1.099 48 3 68,68

PC 500 36 3 41,66

Total 110,34e

Table 7.4: Estimated HW costs

3. Software resources

The cost of the software used for this project (see section 7.2.2) is shown in
the following table:

Resource Cost(e)

Estimated

useful life

(months)

Estimated use

in the project

(months)

Cost for the

project

Apple R© MAC
TM

OS X
Leopard

108.36 48 3 6.77

Eclipse
TM 10 12 5 4,17

Microsoft R© Windows 7
TM 300 36 5 25

OmniGraffle
TM

Profes-
sional (TheOmniGroup R©)

140 12 3 35

GIMP 10 12 3 2,50

OpenProj
TM 10 12 3 2,50

Total 75,94e

Table 7.5: Estimated SW costs

7.3 Economical analysis 130

4. Summary

Table ?? shows the predicted total costs for this project, according with what
has been calculated before:

Concept Cost(e)

Human resources 17.796

Hardware resources 110,34

Software resources 75,94

Total estimated cost 17.982,28e

Table 7.6: Estimated total costs

7.3.3 Real cost

The difference between the estimated and real budget is due to the increase of the
cost in human resources. This is due to the increase of the number of hours used in
the development of this project. Both, software and hardware resources, have not
been affected from the estimated costs as there have been no changes in the resources
that have been used. Therefore, the increase of the budget does not differenciate
much with the estimated one.

Human resources

Person Estimated hours Cost (euros/hour) Total cost

Developer 1200 17,32 20,784

Supervision 60 24,35 1.461

Total 22.245e

Table 7.7: Real human resources costs

Summary

Concept Cost(e)

Human resources 22.245

Hardware resources 110,34

Software resources 75,94

Total estimated cost 22.431,28e

Table 7.8: Real total costs

Appendix A

Reference manual

In this section, the steps needed to execute the system are explained.

A.1 Installation of work environment

In order to run the system, it is needed to install Java for the client’s application
and Erlang to execute the processes on the server’s side.

A.1.1 Java installation

In order to install Java, it can be downloaded from Sun’s website1, following the
instructions that are specified

• In order to execute the client’s application, only JVM 5 or later will be needed.

• If a new player wants to be created for the game, also JDK 1.5 or later has to
be downloaded and installed.

A.1.2 Erlang installation

For this version, R13B03 release has been used. It can be downloaded from Open
Source Erlang’s website 2 and follow the steps that are indicated to proceed with
the installation.

1Sun’s website: http://java.sun.com
2Erlang’s website: http://www.erlang.org/download.html

A.2 Setting up the server 132

A.2 Setting up the server

A.2.1 Starting the server

In order to execute the server, the following steps must be carried out:

1. Download ”server.rar”

2. Uncompress the rar file.

3. Go to the server directory ”org/charade/game/server”

4. Execute erl -setcookie galleta -sname sakonia

5. Once Erlang has been started, the following lines have to be inserted:

Pid=spawn(login server,start,[]).
Pid2=spawn(game server,start,[]).
register(connection,Pid).
register(server,Pid2).

At this point, the server is ready to receive petitions from the players and once
they have joined, start the game.

A.2.2 Configuration file

In order to set the parameters of the game, an XML file is used. This file is stored
as ”org/charade/game/server/map.xml”. The structure of this document has to be
specified as follows:

A.2 Setting up the server 133

<map>

<walls>
<wall x1=”” y1=”” x2=”” y2=””>

</walls>
<doors>

<door state=”” material=”” x1=”” y1=”” x2=”” y2=””>

</doors>
<items>

<item x=”” y=”” name=”” type=”” opt=””>

</items>
<weaponInfos>

<weaponInfo type=”” distance=”” strength=”” noise=””>

</weaponInfos>
<ammunitions>

<ammunition x=”” y=”” name=”” weapon=”” amount=””>

</ammunitions>
<powers>

<power x=”” y=”” type=”” amount=””>

</powers>
<weapons>

<weapon x=”” y=”” name=”” type=”” amount=””>

</weapons>
<obstacles>

<obstacle x=”” y=”” type=”” atenuation=”” light=”” damage=””>

</obstacles>
<useItems>

<item=”” x1=”” y1=”” x2=”” y2=”” action=””>

</useItems>
<cells>

<cell light=”” noise=”” material=”” x=”” y=””>

</cells>
</map>

A.2 Setting up the server 134

A.2.3 Defining a new scenario

A graphical tool has been developed in order to easily define new domains for the
game. For doing so, the following steps have to be followed:

1. Download ”CreateWorld.rar”.

2. Uncompress the rar file.

3. Go to CreateWorld/ directory.

4. Execute java -jar CreateWorld.jar width height
where width and height represent the size of the board

The following window will be displayed:

Figure A.1: CreateWorld screenshot

A.2 Setting up the server 135

5. Load an existing configuration: If the scenario is not created from scratch
and it is wanted to load an existing one, this is done by clicking on the Load
XML button and choosing the correspondent XML file.

6. Create the elements by using the interface: In order to add new elements to
the scenario, different options can be used:

• Add normal cell:

(a) Select ”Add normal cell”

(b) Choose light value

(c) Choose material

(d) Click into the scenario at the point where it wants to be added.

• Add goal cell:

(a) Select ”Add goal cell”

(b) Click into the scenario at the point where the goal cell wants to be
added. It has to be taken into account that only one goal cell can be
created, so if it has been defined before, it will be deleted.

• Add a door or wall:

(a) Select one option: ”Add wall” or ”Add door”(open, closed or locked)

(b) Click into the scenario at the point to create the element. It has to
be taken into account that only one element is created at the same
position. Therefore, if an element is added, but there is another one
at the same location, this one will be deleted.

• Delete a door or wall:

(a) Select the option ”Delete wall or door”

(b) Click into the scenario at the point to delete the element.

• Add an element:

(a) Select the correspondent option ”Add element”, ”Add weapon”, ”Add
ammunition”, etc.

A.3 Playing the game 136

(b) Choose the specific item to add(key, torch, etc)

(c) Click into the scenario at the point to create the element. It has to
be taken into account that only one element is created at the same
position. Therefore, if an element is added, but there is another one
at the same location, this one will be deleted.

• Delete an element:

(a) Select the option ”Delete element”

(b) Click into the scenario at the point to delete the element.

7. Once the game is defined, by pressing the ”Save XML” button and selecting
where to save it, the configuration file is automatically generated.

A.3 Playing the game

1. Installing the application

In order to install the game, the following steps must be carried out:

(a) Download game.rar.

(b) Uncompress the rar file.

(c) Go to charadeGame/ folder.

(d) Depending whether a human player wants to play or an automatic player
is used, one of these three commands are executed

i. To run the application for a human player to use it:
java -jar Game.jar username

ii. To execute an automatic player implemented in the class Class-
Player.
java -jar AIGame.jar ClassPlayer username

A.3 Playing the game 137

iii. To execute an automatic player implemented in the class ClassPlayer
and see it through the graphical interface.
java -jar AIGameGUI.jar ClassPlayer username

2. Executing the application

In Figure A.2 a screenshot is shown. Different elements can be appreciated:

Scenario: Main panel in which the action is shown. It can be seen the
current player’s icon and the rest of elements. Furthermore, there is a
blue cell that will be visible at every time and represents the goal point
that the player has to reach to win the game.

Information panel: Situated at the top of the screen, shows the life points
of the current player and the weight he is carrying.

Inventory panel: Located at the right-hand side of the screen, it includes
two different lists:

• Items that player has and can use. Some of them show extra infor-
mation, like torches, that indicate whether they are on or off.

• Weapons that player has and can use to attack. The number of
ammunition of each one of them is shown in brackets.

It has to be notice the symbol ”X”, that indicates the item or the weapon
that are selected to be use.

Message panel: Located at the bottom of the screen, it informs the player
about its auditive perceptions and other events that he has to be aware
off as they correspond to the result of his actions.

A.3 Playing the game 138

Figure A.2: Screenshot

3. Actions

Players move by using the arrows and can perform the different actions by
using the following keys:

A: Attack to the direction player is facing. If it is wanted to attack to
some specific point, the mouse has to be used by clicking where the attack
wants to be made.

C: Close door

Enter: Touch

L: Leave item

I: Choose from inventory (selects among the items from the inventory)

O: Open door

R: Reload weapon

Space: Pick up object

Turn: Turn

U: Use item

A.4 Creation of a new agent 139

W: Choose weapon (selects among the weapons from the list)

A.4 Creation of a new agent

For each new agent, a new class has to be created. This class would be an
implementation of the interface MyPlayer, needing to implement the methods
chooseAction(Game g) and start(Game g).

Bibliography

[1] Asociacin de ingenieros e ingenieros tcnicos en informtica. http://www.ali.es.
[Online; accessed May-2010].

[2] Métrica versión 3. metodoloǵıa de planificación, desarrollo y mantenimiento
de sistemas de información. http://www.csi.map.es/csi/metrica3. [Online;
accessed April-2010].

[3] Blackrose: Un modelo de razonamiento con incertidumbre en juegos de estrate-
gia. Master’s thesis, Universidad Carlos III de Madrid, 2009.

[4] David Brackeen, Bret Barker, and Laurence Vanhelswue. Developing Games in
Java. New Riders Games, 2003.

[5] Hei Chan, Alan Fern, Soumya Ray, Nick Wilson, and Chris Ventura. Extending
online planning for resource production in real-time strategy games with search.

[6] Hei Chan, Alan Fern, Soumya Ray, Nick Wilson, and Chris Ventura. Online
planning for resource production in real-time strategy games.

[7] John Funge. Artificial intelligence for computer games: an introduction. Sales
and Customer Service Office.

[8] Stephanie Elzer Jarett Cummings and Gary Zoppetti. Bayesian networks in
video games.

[9] Donald Kehoe. Designing artificial intelligence for games. 2009.

[10] Sven Koenig, Maxim Likhachev, Yaxin Liu, and David Furcy. Incremental
heuristic search in ai. AI Mag., 25(2), 2004.

[11] Ronald A. Metoyer, Simone Stumpf, Christoph Neumann, Jonathan Dodge, Jill
Cao, and Aaron Schnabel. Explaining how to play real-time strategy games.

BIBLIOGRAPHY 141

In Max Bramer, Richard Ellis, and Miltos Petridis, editors, SGAI Conf., pages
249–262. Springer, 2009.

[12] Ian Millington. Artificial intelligence for games. Morgan Kauffman, 2006.

[13] Jeff Orkin. Agent architecture considerations for real-time planning. In in
Games. Artificial Intelligence and Interactive Digital Entertainment (AIIDE.
AAAI Press, 2005.

[14] Steve Rabin. AI Game Programming Wisdom. Charles River Media, Inc.,
Rockland, MA, USA, 2002.

[15] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, 2003.

[16] Brian Schwab. Ai Game Engine Programming (Game Development Series).
Charles River Media, Inc., Rockland, MA, USA, 2004.

[17] Michael van Lent and John Laird. Developing an artificial intelligence engine.

[18] Michael van Lent and John Laird. Human-level ai’s killer application: Interac-
tive computer games.

[19] James Wexler. Artificial intelligence in games: A look at the smarts behind
lionhead studios black and white and where it can and will go in the future.

