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Heuristic Hill-Climbing

HILL-CLIMBING ( n: NODE): COST
if ( n = t) return 0
compute nk = argmin{h(ni)},∀ni ∈ SCS(n)
return k(n, nk ) + HILL-CLIMBING ( nk )

Figure: Pseudocode of the Heuristic Hill-Climbing search algorithm

Heuristic Hill-Climbing commits to any of the descendants
with the lowest heuristic estimation to t , underestimating all
the other successors

Heuristic Hill-Climbing exhibits the Markovian property
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An example
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Figure: Searching in a maze 4 × 4
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Homogeneous discrete-time Markov chains

Let Xi denote the successive observations at time steps i ,
i + 1, etc.

The Markovian property states that:

P(Xn+1 = xn+1|X0 = x0, X1 = x1, . . . , Xn = xn) =
P(Xn+1 = xn+1|Xn = xn)

The matrix P = {pij} = {P(Xn+1 = j |Xn = i)} is a
stochastic matrix that represents the probability of every
single-step transition
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Markovian states

Two nodes, n and m, are mapped to the same markovian
state, x , if they have the same chances to evolve to t

The heuristic value, h, and branching factor, b, have been
used in the past to discriminate nodes this way

But also, the class c of a node n (i.e., the number of
eligible descendants) shall be considered

In fact, if c(n) = 0, an error of the heuristic function has
been found!
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An example
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〈0, 2, 0〉 〈1, 2, 1〉 〈2, 3, 1〉 〈3, 2, 1〉

〈1, 2, 1〉 〈2, 1, 0〉 〈3, 3, 1〉 〈4, 2, 1〉

〈2, 2, 1〉 〈3, 2, 0〉 〈4, 2, 1〉 〈5, 2, 1〉

〈3, 1, 1〉 〈4, 1, 1〉 〈5, 1, 0〉 〈6, 2, 1〉

Figure: Markov states represented as τ〈h, b, c〉
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Sampling the state space

The probability to expand a given successor, m 7→ xj , of a
node n 7→ xi is:

qij =

{

1
c(n) , c(n) > 0
1
b , c(n) = 0

Thus, the probability to step from markovian state xi to xj

is:

pij =

∑

i,j
qij

∑

j
qij
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An example
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〈0, 2, 0〉 〈1, 2, 1〉 〈2, 3, 1〉 〈3, 2, 1〉1 1 1

1 0.5 1

〈1, 2, 1〉 〈2, 1, 0〉 〈3, 3, 1〉 〈4, 2, 1〉0.5

1 0.5 1

〈2, 2, 1〉 〈3, 2, 0〉 〈4, 2, 1〉 〈5, 2, 1〉0.5

1 1 1

〈3, 1, 1〉 〈4, 1, 1〉 〈5, 1, 0〉 〈6, 2, 1〉1

Figure: Computation of qij
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An example: single-step transition matrix P

P =

0
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〈0, 2, 0〉 : 0 1 0 0 0 0 0 0 0 0 0 0 0 0
〈1, 2, 1〉 : 1 0 0 0 0 0 0 0 0 0 0 0 0 0
〈2, 1, 0〉 : 0 0 0 0 0 0 0 0 1 0 0 0 0 0
〈2, 2, 1〉 : 0 1 0 0 0 0 0 0 0 0 0 0 0 0
〈2, 3, 1〉 : 0 1 0 0 0 0 0 0 0 0 0 0 0 0
〈3, 1, 1〉 : 0 0 0 1 0 0 0 0 0 0 0 0 0 0
〈3, 2, 0〉 : 0 0 0 0 0 0 0 0 0 0.5 0.5 0 0 0
〈3, 2, 1〉 : 0 0 0 0 1 0 0 0 0 0 0 0 0 0
〈3, 3, 1〉 : 0 0 0.5 0 0.5 0 0 0 0 0 0 0 0 0
〈4, 1, 1〉 : 0 0 0 0 0 0 1 0 0 0 0 0 0 0
〈4, 2, 1〉 : 0 0 0 0 0 0 0.25 0.5 0.25 0 0 0 0 0
〈5, 1, 0〉 : 0 0 0 0 0 0 0 0 0 0 0 0 0 1
〈5, 2, 1〉 : 0 0 0 0 0 0 0 0 0 0 1 0 0 0
〈6, 2, 1〉 : 0 0 0 0 0 0 0 0 0 0 0 0 1 0
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Accuracy of h(· )

Chapman-Kolmogorov equations

p(λ)
ij =

∑

∀k

p(l)
ik p(λ−l)

kj

is the probability that a node in markovian state τi can get to a
node in markovian state τj in exactly λ steps

Thus, p(x)
x0 is the probability that h(· ) provided perfectly

informed values all along the path to the target node for
nodes in markovian state τx
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Mean solution length

Mean first passage times

Mij =
∞

∑

λ=1

λf (λ)
ij

where

f (λ)
ij = p(λ)

ij −
λ−1
∑

l=1

f (l)
ij p(λ−l)

jj

is the probability that, starting from markovian state τi , the first
arrival to state τj occurs in exactly λ steps
Thus, Mi0 is the mean number of steps to reach the goal state
or, the mean solution length
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Results

3×3 (181440 nodes) 2×5 (1814400 nodes) 4×4 (1013 nodes)
h Obs. (p̄x ) Pred. (p̂x ) Obs. (p̄x ) Pred. (p̂x ) Obs. (p̄x ) Pred. (p̂x )
0 1 1 1 1 1 1
1 1 1 1 1 1 1
2 1 1 1 1 1 1
3 0.8 0.8 0.75 0.75 0.714286 0.714286
4 0.13913 0.13913 0.097345 0.097345 0.062015 0.062015
5 0.073170 0.068879 0.065934 0.062834 0.052 0.050238
6 0.041726 0.036011 0.036710 0.031671 0.026440 0.025341
7 0.030864 0.025866 0.021269 0.021315 0.016626 0.016534
8 0.015230 0.011262 0.008424 0.009189 0.006601 0.006764
9 0.010228 0.007179 0.005080 0.005606 0.004788 0.004858
10 0.006235 0.003555 0.002983 0.002978 0.004843 0.004806
11 0.004706 0.002504 0.001833 0.001826
12 0.002991 0.001266 0.001044 0.001026
13 0.002023 0.000873 0.000630 0.000624
14 0.001432 0.000470 0.000381 0.000371
15 0.001081 0.000319 0.000217 0.000223
16 0.000912 0.000178 0.000123 0.000134
17 0.000765 0.000119 6.5×10−5 8.0×10−5

18 0.000821 7.0×10−5 3.2×10−5 4.8×10−5

19 0.000790 4.4×10−5 1.5×10−5 2.8×10−5

Table: Results in different sliding tile puzzles
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