Heuristic Hill-Climbing as a Markov Process

Carlos Linares López

Planning and Learning Group Departamento de Informática Avenida de la Universidad, 30 28911 - Leganés Madrid (España)

carlos.linares@uc3m.es
http://www.plg.inf.uc3m.es/~clinares

June, 12, 2008

Outline

2

Heuristic Hill-Climbing

- Markov Chains
 - Markovian states
 - Sampling the state space
- Heuristic Hill-Climbing as a Markov Process
 - Chapman-Kolmogorov equations
 - Mean first passage times

글 🕨 🖌 글

Outline

< 🗇 🕨

(七日)) (日日)

Heuristic Hill-Climbing

```
HILL-CLIMBING (n: \text{ NODE}): \text{COST}
if (n = t) return 0
compute n_k = \operatorname{argmin}\{h(n_i)\}, \forall n_i \in \operatorname{SCS}(n)
return k(n, n_k) + HILL-CLIMBING (n_k)
```

Figure: Pseudocode of the Heuristic Hill-Climbing search algorithm

- *Heuristic Hill-Climbing* commits to any of the descendants with the lowest heuristic estimation to *t*, underestimating all the other successors
- Heuristic Hill-Climbing exhibits the Markovian property

Heuristic Hill-Climbing

```
HILL-CLIMBING (n: \text{ NODE}): \text{COST}
if (n = t) return 0
compute n_k = \operatorname{argmin}\{h(n_i)\}, \forall n_i \in \operatorname{SCS}(n)
return k(n, n_k) + HILL-CLIMBING (n_k)
```

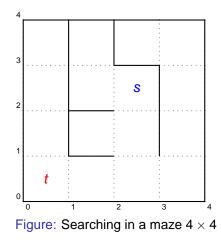
Figure: Pseudocode of the Heuristic Hill-Climbing search algorithm

- *Heuristic Hill-Climbing* commits to any of the descendants with the lowest heuristic estimation to *t*, underestimating all the other successors
- Heuristic Hill-Climbing exhibits the Markovian property

Heuristic Hill-Climbing

Markov Chains Heuristic Hill-Climbing as a Markov Process Results

An example



э

ъ

Markovian states Sampling the state space

Outline

2 Markov Chains

- Markovian states
- Sampling the state space
- Heuristic Hill-Climbing as a Markov Process
 Chapman-Kolmogorov equations
 Moan first passage times
 - Mean first passage times

4 Results

< 🗇 🕨

- 신 코 에 시 코

Markovian states Sampling the state space

Homogeneous discrete-time Markov chains

- Let X_i denote the successive observations at time steps *i*, i + 1, etc.
- The Markovian property states that:

$$P(X_{n+1} = x_{n+1} | X_0 = x_0, X_1 = x_1, \dots, X_n = x_n) = P(X_{n+1} = x_{n+1} | X_n = x_n)$$

The matrix P = {p_{ij}} = {P(X_{n+1} = j|X_n = i)} is a stochastic matrix that represents the probability of every single-step transition

・ロト ・ 同ト ・ ヨト ・ ヨト

Markovian states Sampling the state space

Markovian states

- Two *nodes*, *n* and *m*, are mapped to the same *markovian state*, *x*, if they have the same chances to evolve to *t*
- The heuristic value, *h*, and branching factor, *b*, have been used in the past to discriminate nodes this way
- But also, the class *c* of a node *n* (i.e., the number of eligible descendants) shall be considered
- In fact, if c(n) = 0, an error of the heuristic function has been found!

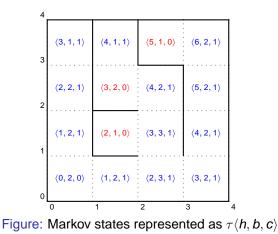
Markovian states Sampling the state space

Markovian states

- Two *nodes*, *n* and *m*, are mapped to the same *markovian state*, *x*, if they have the same chances to evolve to *t*
- The heuristic value, *h*, and branching factor, *b*, have been used in the past to discriminate nodes this way
- But also, the class *c* of a node *n* (i.e., the number of eligible descendants) shall be considered
- In fact, if c(n) = 0, an error of the heuristic function has been found!

Markovian states Sampling the state space

An example



⇒ < ⇒ >

< 一型

ъ

Markovian states Sampling the state space

Sampling the state space

The probability to expand a given successor, m → x_j, of a node n → x_i is:

$$q_{ij}=\left\{egin{array}{cc} rac{1}{c(n)} &, oldsymbol{c}(n)>0\ rac{1}{b} &, oldsymbol{c}(n)=0 \end{array}
ight.$$

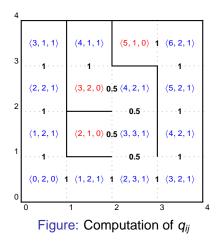
Thus, the probability to step from markovian state x_i to x_j is:

$$p_{ij} = rac{\sum\limits_{i,j} q_{ij}}{\sum\limits_{j} q_{ij}}$$

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Markovian states Sampling the state space

An example

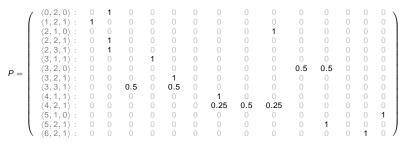


⇒ < ⇒ >

ъ

Markovian states Sampling the state space

An example: single-step transition matrix P



ヨトメヨト

Chapman-Kolmogorov equations Mean first passage times

Outline

Markov Chains

- Markovian states
- Sampling the state space

Heuristic Hill-Climbing as a Markov Process

- Chapman-Kolmogorov equations
- Mean first passage times

4 Results

- 신 코 에 시 코

Chapman-Kolmogorov equations Mean first passage times

Accuracy of $h(\cdot)$

Chapman-Kolmogorov equations

$$oldsymbol{
ho}_{ij}^{(\lambda)} = \sum_{orall k} oldsymbol{
ho}_{ik}^{(l)} oldsymbol{
ho}_{kj}^{(\lambda-l)}$$

is the probability that a node in markovian state τ_i can get to a node in markovian state τ_j in exactly λ steps Thus, $p_{x0}^{(x)}$ is the probability that $h(\cdot)$ provided perfectly informed values **all along the path to the target node** for nodes in markovian state τ_x

ヘロト ヘ帰 ト ヘヨト ヘヨト

Chapman-Kolmogorov equations Mean first passage times

Mean solution length

Mean first passage times

$$M_{ij} = \sum_{\lambda=1}^{\infty} \lambda f_{ij}^{(\lambda)}$$

where

$$f_{ij}^{(\lambda)} = p_{ij}^{(\lambda)} - \sum_{l=1}^{\lambda-1} f_{ij}^{(l)} p_{jj}^{(\lambda-l)}$$

is the probability that, starting from markovian state τ_i , the first arrival to state τ_j occurs in exactly λ steps Thus, M_{i0} is the mean number of steps to reach the goal state or, **the mean solution length**

Outline

< 🗇 🕨

(4) 日本(4) 日本(日本)

Results

	3×3 (181440 nodes)		2×5 (1814400 nodes)		4×4 (10 ¹³ nodes)	
h	Obs. $(\bar{p_x})$	Pred. $(\hat{p_x})$	Obs. $(\bar{p_x})$	Pred. $(\hat{p_x})$	Obs. $(\overline{p_x})$	Pred. $(\hat{p_x})$
0	1	1	1	1	1	1
1	1	1	1	1	1	1
2	1	1	1	1	1	1
3	0.8	0.8	0.75	0.75	0.714286	0.714286
4	0.13913	0.13913	0.097345	0.097345	0.062015	0.062015
5	0.073170	0.068879	0.065934	0.062834	0.052	0.050238
6	0.041726	0.036011	0.036710	0.031671	0.026440	0.025341
7	0.030864	0.025866	0.021269	0.021315	0.016626	0.016534
8	0.015230	0.011262	0.008424	0.009189	0.006601	0.006764
9	0.010228	0.007179	0.005080	0.005606	0.004788	0.004858
10	0.006235	0.003555	0.002983	0.002978	0.004843	0.004806
11	0.004706	0.002504	0.001833	0.001826		
12	0.002991	0.001266	0.001044	0.001026		
13	0.002023	0.000873	0.000630	0.000624		
14	0.001432	0.000470	0.000381	0.000371		
15	0.001081	0.000319	0.000217	0.000223		
16	0.000912	0.000178	0.000123	0.000134		
17	0.000765	0.000119	6.5×10 ⁻⁵	8.0×10^{-5}		
18	0.000821	7.0×10^{-5}	3.2×10 ⁻⁵	4.8×10^{-5}		
19	0.000790	4.4×10^{-5}	1.5×10 ⁻⁵	2.8×10^{-5}		

Table: Results in different sliding tile puzzles

・ロン ・四 と ・ ヨ と ・ ヨ と …

ъ.

Bibliography I

- Ghallab, M., Nau, D., Traverso, P.:
 Automated Planning: Theory and Practice.
 Morgan Kaufmann, San Francisco, CA, USA (2004)
- Bonet, B., Geffner, H.:
 Planning as heuristic search.
 Artificial Intelligence 129(1–2) (2001) 5–33
- Bonet, B., Geffner, H.:

Planning as Heuristic Search: New Results.

In: Recent Advances in AI Planning: Proceedings of the Fifth European Conference on Planning (ECP-99). Volume Lecture Notes in AI 1809. Springer (1999) 359–371

Bibliography II

Hoffmann, J., Nebel, B.:

The FF planning system: Fast plan generation through heuristic search.

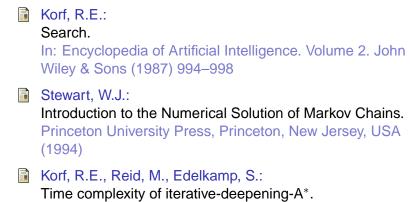
Journal of Artificial Intelligence Research **14** (2001) 253–302

Refanidis, I., Vlahavas, I.:

The grt planning system: Backward heuristic construction in forward state-space planning.

Journal of the Artificial Intelligence Research **15** (2001) 115–161

Bibliography III



Artificial Intelligence 129(1-2) (2001) 199-218