Computer Engineering. Academical year 2007-2008
Universidad Carlos III de Madrid

Modelling a RTS Planning Domain with Cost

Conversion and Rewards

Author: Vidal Alcazar Saiz

Advisors: Daniel Borrajo Millan, Carlos Linares Lopez

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

Abstract: This work analyzes an alternative to classical domain definition in PDDL of real life
problems such as Real Time Strategy games, explores the possibilities of general problem

solvers and innovates in its approach to gaming using automated planning.

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

Table of Contents

1. INTRODUGCTION......coiiititieite ettt ettt ettt sttt e et e e bt e e e nbteeeenbbeeeennbeeeeennee 7
2. STATE OF THE ART ...ttt ettt ettt et sttt e et e et eeeenneas 11
2.1 Real Time Strat€Zy SAMES.eeerureeriieiniieeniieeeieeeeiteeeeiteeseiteesibeesibeesbteesbbeesbaeesnnes 11
2.1.1 Overview of Real Time Strategy Sames..........cevvuveerriiieriiieeniiieeniieesieeeniee e 11

2.1.2 Artificial Intelligence in RTS Zames........ccceeviiiiiniiiiniiiieniieeieeeiee e 18

2.1.3 Challenges of RT'S amMES.......ccccueiiiiiiiiiiiiiie ettt 20

2.2 ORT S ettt b et ettt ettt e bt e et b e et e bt e e nneee s 22
2.2.1 Features of ORTS ..ot 22

2.2.2 ORTS versus commercial RTS games..........ccccoevveeiiiiiiiiiiiiieesiiiiee e 25

2.2.3 Functioning of ORTS.......ooiiii et 27

2.3 Automated Planning and PDDL..........coooiiiiiiiiiiieeeceeeeeeeee e 32
2.3.1 Overview of Automated Planning.............ccoceeeriiiiniiiiniiiiniiciieceieeeee e 32

2.3.2 Bases of Heuristic Planning...........cccccooviieiiiiiiiiiiniieeeeeenecceee e 36

2.3.3 PDDL 2.1ttt ettt ettt e neee s 38

3. OBIECTIVESttt ettt ettt e e s ee e s eanaeee s 46
4. DEFINITION IN PDDL AND CLIENT DESCRIPTION......ccccoctvriiniiniieiiieenieesieeeiene 48
4.1 Problem deSCTIPION.uiiiiiieeiiteeiieeeiteeite et et e et e st te e sbeeesabeesabeessateesbbeesbaeesnnnns 48
4.2 CHENE SIIUCTUTE.eeuvieeitieiteeite ettt ettt et eat et sat e e bt e esteesbeesate e bt e eaaeesbteeeesabeeeesannees 54
4.3 DOmain defiNItION.eoitiiiiieiieeiie ettt sttt ettt 56
4.3.1 Behaviors as unit CONSUMING OPETALOTS.eeeruveerrureeeirreerireerreeenreeesrreeeessssnnneees 57

4.3.2 Intermediate OPETALOTS. ...cccuveeerurieeriieeetreeetreeeteeesseeessreeessreeeseeesseeessssneeessassnsssees 61

4.3.3 GOAl defiNItION.......iiiiiieeiiieeiiee ettt e et e e e e et e e e e e sbeeesnbeeeeesnnnnneeas 63

G T A 0 1N PP PP PUUURRRRN 68

TG BRI\ 01 4 2 et 1 10) s DO PRSP 75

4.3.6 ObJect TEULIIIZATION.c..eeeiiiiiieiieeieeee ettt 76

4.3.7 Problem definition.........ccoiiiiiiiiiiiieiniie et 77
S.USER'S MANUAL. ...ttt ettt ettt ettt e s 79
5.1 Using the planning dOmMAIN.........ccovuiiiriiiiniieeiie ettt ettt eesbeeesbee e 79
5.2 Installing and using ORTS......ccuiiiiie et e e e 80

6. RESULTS ...ttt ettt et st e be e e st e e snbeeeeeabeeeeens 84
6.1 Cost-to-operator conversion and MELTICS.ueerveeerveeerieerrieeerieeerieeeeeessirareeeesesnnenes 84
6.2 Problem COMPIEXILY......ccciieriuiieriieeeiieerteeeriee et ee ettt e et e e st e e saeeesbaeeeeeeennnsaaeeaesennnnnes 97
6.2.1 Initial value of Pre-total-COSt......cc.uiiiiiiiiiiiiieeieeee e 98

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

6.2.2 Number of units and other in-game parameters............cecueeeuvereueeeenrreeeenneeeennnee 100
6.2.3 Improvements of object reutiliZation...........ccceevueerieriiiiiieniiieceeeeeee e 107
6.2.4 Parameters Of the Planner.............cooviiiiiiiiiiiiiiiiiieeee et 108
6.2.5 Practical utility of the plans...........cccoviiiiiiiiiniiiei e 109
7. CONCLUSIONS ...ttt ettt sttt e sbe e sbeesaeeeneeenaes 113
8. FUTURE WORK ..ottt 116
BIBLIOGRAPHY ...ttt ettt sttt e et e e 117
ANNEX A: Game 3 BIUCPTIINL...cccuiiiiiiieiiieeeiie ettt etee et ere et e e ireesanae e e e e ansaeeas 119
ANNEX B: Domain Definition.........ccc.coiiiiiiiiiiiiiiiieieeecee et 126
ANNEX C: Problem Definition...........ccoiuiiiiiiiiiieieeieieeieee ettt 133

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

Figures Index

Figure 1: Example of fog of war in Age of Empires IL. ..o 13
Figure 2: Dune II's interface, a typical interface in the genre...........cccccceevviiiniiiiniieiiinnniineee. 14
Figure 3.: ORTS's 3D Graphic User Interface...........ccoceevviriieniiniiinienieeienieeeee e 24
Figure 4: Marine bIUEPTINT.........coouiiiiiiiiiiieieeeeteee et 30
Figure 5: Homing missile BIUEPIINT........cocueiiiiiiiiiiiiiiiiiieeieceeseee e 31
Figure 6: Use of numeric expressions in PDDL 2.1......c..cooiiiiiiiiiiiiniiiieieeceec e 40
Figure 7: Domain definition fOr MEtriCs.........covuiiriiiriiiniieiieeieeeeeeteeee e 42
Figure 8: Problem definition With MEriCs.ccocuiiiiiiiiiiiiiiiiiieeiceeeeeeeee e 43
Figure 9: An example of durative aCtion..........c.c.eerieriieniiniiienie et 44
Figure 10: An example of continuous durative aCtion.............cceeeeevueenieenieenieenieenieeeiieee e 45
Figure 11: Initial state In GAmME 3........cooiiiiiiiiiiiiiieieee ettt e e e e 53
Figure 12: Rewards Per SOIAIET......ccc..uiiiiiiiiiiiiceeeee ettt 66
Figure 13: Accumulated TEWATdS.........cccueeiiiiiiiiiiiiceice e 67
Figure 14: Final rewards fUNCHON.coouiiiiiiiiiriieiecceeeecee e 68
Figure 15: MEtric t0 MINIIMIZE.cocuteriiirieiiienieeieente ettt ettt et et ebeeseee e st e e e enneeeseneee 74
Figure 16: Cost-INCrease IMPACT........ccouirieiiiiriieiierie ettt ettt e e e 89
Figure 17: Reward-Threshold Impact.............ccoueiiiiiiiiiiniiiiecceee e 94
Figure 18: Initial-COSt TMPACT....c...eeruiiiiiiiiieieeiteete ettt 99
Figure 19: Number of SOIdIiers IMPACL..........eevueiriiiiiiniiiieeniieeieerteee et 101
Figure 20: Number of WOTKers ImMPaCT.........c.covuiiriiiriiiiiiiriieiieesieeieeste ettt 105
Figure 21: Accumulated-COSt TMPACT........eeerviieriieeriieerieeeiteeeeeeeeeeeeieeeereeeeaareeeeeeseaaaeeas 106

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

Index of Tables

Table 1: Differences between commercial RTS games and ORTS...........cccccooiiiiiiiininennnne. 27
Table 2: Statistics of the Objects 1N ZAME 3.......cooiiriiiiiiiiiiieeeeee e 51
Table 3: Comparison of metrics in simple problems..............coocveeriiiiniiiiniieiniiieeeeieeeeee 96

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

1. INTRODUCTION

Almost since Artificial Intelligence was conceived as a field of research, games have been a
fruitful testbed for many different approaches. Classical games are in most of the cases
motivating problems and easy to represent in an adequate Al context, which has lead to great
advancements in this field even getting computer players much stronger than professional-
level human players. Some recent examples of how computers are being able to surpass
humans are the latest challenges against chess world champions and the checkers problem
being solved [Schaeffer et al. 317]. However, classical games are seldom extrapolated to real
life problems and thus these advances have not had a significant impact in developing

software able to cope with everyday problems that are trivial for humans.

Lately, with the advancement in computing, much more complex games have appeared and
become one of the largest parts of the entertainment industry. While many types of games
exist, those which consist in confronting two or more players in equal conditions as in
classical gaming offer almost endless possibilities for Al research. A particular kind of game,
real time strategy games, is particularly appealing as their characteristics make them similar to
real life situations in which there is a notorious interest, such as military simulations. This,
coupled to the fact that there is already a high level of expertise in RTS games (since they are
very popular, up to generate a profit of millions of euros and create contests which emulate

sport competitions at professional level), makes them a very attractive option.

So far the main problem is that RTS games have been created by private companies that are
obviously motivated by economical reasons, so most of the games are closed source projects
and lack real Al implementations, making them almost useless to researchers. To overcome
this, several projects in the Al community have appeared that recreate RTS games, such as
Stratagus [Stratagus]. Most of this projects are still in their earliest stages, however there is a
platform created by Michael Buro and Tim Furtak at the University of Alberta which already
offers great possibilities for researchers: Open Real Time Strategy (ORTS). This project has
been conceived for scientific purposes and not as an attempt to recreate popular commercial
RTS games, so there are several characteristics that difference it from these games, offering a

favorable environment for Al experimentation.

Apart from being a GPL project, which already has plenty of advantages for academical

research, ORTS recreates RTS domains based on a script created by the user, so it is not

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

limited to a set of games, letting the user design his objects and rules. It is complex enough to
simulate commercial games with fidelity and has modules that solve common Al issues in
these kind of games such as pathfinding. Besides, it is based on a server-client architecture,
which avoids map hacking and allows players to connect their own customized clients, giving
the possibility of creating autonomous computer clients, interfaces for humans to play or a
hybrid client where the human is in control and the Al performs tasks depending on how the
developer designed the client.

One of the main reasons for the popularity of ORTS among these kind of tools is the annual
competition which is held by the developers in order to encourage participation and to
promote their platform in the Al scene. This competition consists on four different domains
which offer different challenges, including pathfinding, resource management,... Out of these
four domains, the most complex and the one that is closer to RTS games is the third one,
which basically is a fighting contest between two armies with resource management and a
simple technology tree. Actually this is the base for almost all the existent RTS games, so it is
by far the most interesting domain when trying to solve this kind of problems with Al
techniques.

Among the different approaches of Al in games, search has been the most used in classical
gaming. Generally the most intuitive way of solving classical games is searching the state
space evaluating the different positions looking for the most advantageous move for the
player. However, due to the characteristics of RTS games this approach is not valid for
solving the aforementioned domain. In this situation, a step forward has to be taken and more
complex Al techniques should be used. In this work we will use automated planning as the
mental process a human player follows when trying to find an adequate strategy is similar to
planning a sequence of actions that lead to a goal. For example, if a human player wants to
attack an enemy base he will send the workers to get resources, build soldiers once the
resources are gathered and attack with the the base, and if he wants to set another base to
increase his resource income he will send a worker close to some resources, build a basic
building and produce additional workers. These examples clearly illustrate how actions could
be represented as operators that will compose the planning domain of and how using these
operators and facts that represent relevant objects in the game goals can be achieved.

The main issue when solving a problem with automated planning is usually the definition of
both the domain and the problems, being the domain the set of possible actions that can be

taken and the problem the definition of the initial facts and the final goals for a particular

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

situation. In the third domain of the ORTS competition, specific planning domains have to be
designed as its characteristics do not allow to represent every possible action as an operator
and the winning condition as the goal of the problem, a computationally too hard problem for
current planners. In order to do this abstraction, resource reutilization and other techniques

will be used to overcome the main problems of the process of representation.

Planners receive as input a domain and a problem coded by using a specific syntax or
language. Traditionally every planner used a self-defined language to represent operators,
facts, etc... However as the need of comparing the efficiency of general problem planners and
being able to try different planners for the same problem arose, common languages were
created to standardize planning problem definition. The most known of this languages is
probably STRIPS [Fikes and Nilsson, 1971], named after the original planner that accepted it
as input. As time passed and due to the limitations of STRIPS, other languages where
developed having it as a base. Nowadays, PDDL, which originally was devised to make the
International Planning Competitions possible [McDermott, 98], is the standard for most
planners. The version we will use is 2.1, the version used in the 3rd International Planning

Competition, although not all its features will be necessary.

As mentioned above, PDDL 2.1 is accepted by many planners, but not all the features are
supported by all the planners. In our case, we will use Metric-FF [Hoffmann, 2002] for all the
experiments for two reasons: its performance for numeric problems is very good, as seen in
the 3rd International Planning Competition; and it supports several key features essential for
our work. As an extension other planners could have been tested, but for the purpose of this

work a single planner is more than enough, as we are not focusing in performance.

As the last part of this introduction, we will show how the document will be structured:

e Chapter 2, State of the art, will be an overview about the questions that conform the
base of the work and the current trends of research about them. It will include several
subsections regarding gaming in Al and RTS gaming in particular, ORTS as the
platform used for experimentation, automated planning and domain definition in
PDDL and the latest achievements in this area by Al researchers.

e Chapter 3, Objectives, will state what are we going to achieve in this work and which
results we expect to get. For this, the scope of the work will be clearly specified
stating what will be done and what will be left for further works.

e Chapter 4, Definition in PDDL and Client Description, will describe the work done

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

going from a general point of view to a more detailed analysis. Throughout the
description it will have into account the architecture of the system, a description of
each module, a list of issues found and how they were solved, etc... It will include as
well a brief user's manual for those not familiarized with the system.

e Chapter 5, User's Manual, will give a few guidelines to use ORTS and the planning
domain, describing every step from installation to execution.

e Chapter 6, Results, will show the different results of the experimentation analyzing
them in each relevant case. Graphics and comparisons between different cases and
parameters will be displayed.

e Chapter 7, Conclusions, will consist on a short set of facts derived from all the
previous experiments. We will try to conclude whether the results were the ones we
were expecting and whether they can be seen as relevant from a scientific point of
view.

e Chapter 8, Future Work, will state which are the possible works that may benefit from
this project and how further experimentation in this context could be interesting for

similar problems.

After the main content, three annexes will be included containing code which is too long to
suit in one of the previous chapters:

e Annex A, Game 3 Blueprint, will include the blueprint that defines the third domain of
the ORTS competition.

e Annex B, Domain Definition, will be the actual PDDL code that constitutes the
domain used as solution.

e Annex C, Example of Problem in PDDL, will be one of the multiple problems used in

the experimentations that will represent a real situation in ORTS.

10

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

2. STATE OF THE ART

In this section, an overview of how the different aspects of the problem will be given, with an
emphasis on references to the latest articles related to the topic. This section will be composed
of four subsections, each one describing a part of the work: the first one will deal with Al and
gaming, studying classical approaches and analyzing the different challenges that modern
RTS games pose to researchers; the second one will describe the platform which will be used
to generate problems and to parametrize the domain, ORTS, discussing the differences that
exist between it and commercial games and how this particularities allow simulations that
were not possible until it was created; the third one will give an overview of the functioning
of automated planning and the most extended language for defining planning domains,
PDDL. Finally, a last section will focus on the things that have not been studied yet in the
field and the relation to our work, so the purpose of the project can be clearly established.

2.1 Real Time Strategy games

This section is centered on real strategy games and the different relevant factors for our
work related to them. The first subsection is an overview of this kind of games, introducing
concepts and giving information about the common bases of these games. The second
subsection comments the current state of Al in RTS games, mostly about commercial RTS
games. The third one analyzes the challenges RTS games pose to the study of Al

techniques, depicting common problems and the possible related solutions.

2.1.1 Overview of Real Time Strategy games

As per their definition, RTS games are strategy games distinctly not turn based.
However, their conception has varied over the years and nowadays a much more
specific concept of game is regarded as a standard RTS game. Basically, an RTS game
involves resource gathering, base and technological development and tactical combat.
The player has control over several units which are managed by issuing orders (or
giving them commands) using a cursor to point locations and the keyboard and mouse
buttons for the commands themselves, which frees the player from manually controlling

11

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

every unit at every single moment. Games involve two or more players who play the
game simultaneously without waiting for their adversaries to act, which usually lead to
dynamic and fast-paced games, at least when direct confrontations occur. The interface
is generally a top-down perspective of the world with frames or bars that either display

information or allow interaction with the units.

Although games of similar characteristics exist since the 80's, the foundations of the
genre were set in 1992 by Dune II: The Building of a Dynasty developed by Westwood
Studios. It was based on the same titled film by David Lynch (which was based itself
on the series of novels written by Frank Herbert) and sold as a sequel of a previous
game, though it was not directly related to it. This game introduced multiple concepts

that would be used later by the trademarks of the genre:

e Resource gathering to fund unit construction and base/technology development:
In this game, specific vehicles harvest spice distributed by some areas of the
world and carry it back to the base, which adds up to the amount of available
spice the player has and that can be spent in certain buildings. This of course
varies from game to game generally depending on the universe they are based
upon, but it has been kept like that as a staple for most of the successful RTS

games.

e A technology tree in which buildings, upgrades and researches are prerequisites
for more advanced units or abilities. A typical example is having to upgrade the
main building before building a factory, which produces tanks that effectively
counter earlier available units such as regular soldiers. Thus, reaching certain
technology levels (often denominated as Tiers) before other players usually

results in an important advantage.

e A mouse controlled cursor is the main way of playing. This is probably because
of its availability, as the use of the mouse in the previous years was not
extended, but it is nevertheless an innovative point of the game.

e Fog of war: this feature means that the world map is not initially revealed and it
is shown as the player's units, characterized with a line of sight, scout the map.
Besides, a part of the map is only updated when a unit is watching it, so enemy
units are not displayed unless they are in the line of sight of an allied unit. This

splits the map in three kind of areas, areas currently being observed, in which the

12

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

information is complete, areas already explored but not currently observed, in
which static objects as buildings or terrain features are visible (usually in a
grayed fashion) but no dynamical units are displayed, and the unexplored areas,
usually completely black. This feature has a great impact on gameplay and
greatly encourages scouting. In the figure below, the unit scouted the upper right
part, which is now grayed because it is out of the line of sight, while the
unexplored areas remain black..

Figure 1: Example of fog of war in Age of Empires II.

e Distinct factions with particularities between them, such as unique units, or
game related advantages. In this case, three houses were available: the Atreides,
the Harkonnen and the Ordos.

e A typical RTS interface, shown in Figure 2. Almost all the later RTS games have
used a similar interface. It is generally composed by menu options regarding the
game itself (Quit, Save,...), a minimap showing the world, a description for the

selected units and an area with the possible actions and abilities of the unit.

13

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

o

Figure 2: Dune Il's interface, a typical interface in the genre.

After the success of Dune II, a series of similar RTS games developed mainly by the
aforementioned Westwood Studios and Blizzard Entertainment would hit the market
selling literally millions of copies and popularizing the genre in the industry of
entertainment. Some of the most known games are the Command & Conquer series, the
Warcraft series, Starcraft, the Age of Empires series and Total Annihilation. The
popularity of these games is such that international competitions with professional
players are frequently held, being the most notorious case the Starcraft competitions that
take place in South Korea [Starcraft Competitions]. Some games differentiated
themselves by adding other elements from other genres or using features uniques to
them, but up to date the standard RTS game is still greatly based on these generation of

games.

From a strategical point of view, two contrary aspects have to be taken into account:
macromanagement and micromanagement. Macromanagement is taking general
decisions like attacking, retreating, setting a new base, researching a new technology,...
while micromanagement refers to actually controlling the units in the game.
Macromanagement is usually the strategical part of the game, while micromanagement
is mainly dependent on the skill of the player at giving orders using the interface. This is
a great concern in RTS games, as it is the main difference between human and computer

players. While for humans developing a sound strategy is usually a simple thing,

14

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

computers players are unable to do so in an easy way, as we will analyze in the
following section; on the other hand, micromanagement is clearly favorable to
computers, which virtually have a cursor for every unit, while human players have to
issue commands one by one. Actually at expert levels the skill in micromanagement is
usually the decisive factor among human players, which had led to critics of the genre to
say that there is little strategy involved and that RTS games have degenerated into a sort
of clicking game where good reflexes are the most desirable skill. To reduce the
importance of this factor, developers are including Al scripts and interface options like
squad management, unit behavior definition, auto usable skills and queues of actions

that allow the player to focus on the more strategical aspects of the game.

Usually most of the basic strategies are easily understood. Building, gathering,
attacking, defending are all concepts that even players new to the genre can understand
intuitively. However, several strategic concepts particular to the genre are often used
which basically describe the main ways of playing. The following is a list of strategies
that commonly appear in RTS games:

e Scouting: due to the fog of war, the information about the world is incomplete,
so in order to get information the players have to scout the map with their units.
This is essential for the game, as generally the best strategy is to counter the
other player actions, like attacking undefended bases or retreating when an
enemy force is heading towards an allied base. Expert players are known to be
able to scout constantly while developing their own strategies. Besides many
games are rock-paper-scissors games in the way that there are units designed to
counter other units but that have a weakness against other units as well,
encouraging scouting given the importance of knowing which kind of units the
opponents are using. An interesting fact is that to counter the weakness of
computer players, they cheat and have complete information (see next section),
so scouting is not done by computer players.

e Harassing: another key concept at high level playing, harassing consists on
making hit and run attacks with a few units against vital elements of an
opponent, such as gatherers or key buildings. This diverts the opponent and
makes him focus on the defense of this point usually forcing him to change his

strategy, which hampers him as he cannot pay attention to other activities. A

15

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

classical example is harassing the workers at the main base while the main
forces attacks another base. If not careful, the opponent will either fail at
defending the attacked base or lose part of his gathering units.

e Crippling the enemy economy: a very common tactic in some RTS games is
making attacks against the gatherers of an opponent even if it means losing the
attacking units. If successful, this can be a winning move: such an attack is a
direct hit on his economy as time and resources are necessary to rebuild them,
interrupting the flow of resources and thus the amount of military units that can
be produced, which highly compensates the units the attacker lost on his attack.
This strategy was specially common in Starcraft, as it was a game greatly based
on how fast units could be produced. As a side note, many of these attacks are
done using transports which carry military units to the enemy base and

eventually serve as a way of retreating, being called “drop” in this case.

e Map control: Resources in RTS games tend to be scattered around the map, so
one of the key factors is claiming and defending the resources so it can be turned
into units to beat the opponents. Furthermore, maps are designed with obstacles,
different types of terrain, etc... so there are choke points where a clever use of
the terrain can mean the difference between winning or losing an encounter.
Playing accordingly to this is called map control, and it is one of the main factors
that can decide a game. Having map control means that the player will receive
more resources than his opponents, letting him win by attrition or simply by
sheer power as he will be able to produce more units and research more
advanced technologies. This shows the influence of the map in the way of
playing the game; a typical example is a map in which there is only a way out of
the main bases: if an opponent blocks that exit, it will be able to prevent the
opponent from leaving the base and ensuring that he will not be attacked
anywhere else on the whole map. Usually important spots on the map are kept
by building expansions to gather resources more quickly and to act as a
secondary bases or building offensive structures (turrets, cannons or mine fields
come to mind as possible examples).

e Rushing: This strategy consist on building an offensive force as quickly as
possible and attacking the opponent before he is ready to defend himself from
enemy forces. This kind of attack is usually done in the earliest stages of the
game using fast and offensive-oriented units and is a natural counter to teching.

Using this strategy was at a time considered by the community as a cheap tactic

16

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

to win the game before the players set their strategies. However, rushing is
indeed a risky tactic, as it involves sacrificing the economy and the development
of the player looking for a direct win; f it fails, as it usually happens against
turtling opponents, the rushing player is at a clear disadvantage and a counter
attack usually settles the game for good. Being things like this, nowadays
rushing is seen as a perfectly valid strategy, as it takes a certain skill to execute it
at the right moment and successfully.

e Turtling: Turtling means playing the game defensively, usually building
defensive structures at the main base and gathering a substantial force before
taking any step. Turtling is the most common tactic among newcomers to the
genre, though it is usually disregarded as a helpful strategy as it fails at map
control and often means an eventual lose. The only interesting point of it is that

it counters rushing naturally.

e Teching: Teaching means disregarding both attack and defense to employ the
resources on technologies or advancements that will give the upper hand to the
teching player. Building a factory to produce tanks earlier instead of creating a
few soldiers to defend from a possible attack is a clear example of teching, as
once the tanks are out they will theoretically win the battle against plain soldiers.
This tactic is of course very dangerous, but in order to win it is something that
must be done at several moments in the game so the force of the player does not
become obsolete. Again and showing the rock paper scissors mentality of RTS

games, rushing counters teching while teching counters turtling.

e Battle micromanagement: In most RTS games, units have health points and
they are destroyed when these points are reduced to 0. However, a unit with a
single health point left functions as well as a unit at full health, so one of the
most important tactics when battling is to spread the enemy fire as evenly as
possible among allied units while focusing fire on the opponent's weakest units.
This is achieved by manually ordering the individual units to retreat when at low
health so they can escape (and maybe lure attacking units) and to attack a single
unit that is specially vulnerable. It is obvious that with this kind of functioning, 8
units at half health will defeat 4 units of the same kind at full health, thereby the
importance of micromanagement. This is subject to plenty of factors, as the
complexity of the games, with range, area of effect attacks, complex abilities,
different kind of armors and many other features can overshadow this, but it is

still kept as a rule of thumb.

17

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

All of these strategies are used in which is usually considered the standard RTS match:
eliminating the opposing players. However, RTS games are not limited to this kind of
setup. To spice up matches, in modern games players are given the option to choose the
winning conditions. Some examples are killing a unique unit of an opponent, reaching a
given amount of resources, holding a position or keeping an object during a set amount
of time,... Besides, for single player game campaigns are created with a plot and a series
of scenarios (scripted premade maps), though they often deviate from the basics of RTS
games.

As an additional comment on strategies in standard RTS games, it is interesting to note
that expertise of human players has allowed the design of the best ways to begin the
game, as it happened with openings in chess. These openings are usually referred to as
build orders, even though they include actions different from building or producing new
units. Often there are variation of this build orders that lead to a particular strategy, such
an early rush. For example, in a game in which four workers are initially available, a
possible build order would be this one:

1. Worker 1 scouts enemy base.

2. Worker 2 builds barracks.

e

Workers 3 and 4 gather resources.
4. Build 3 additional workers. First two gather resources, the third builds a turret.

5. Once the barracks are built, two soldiers are produced. Both harass the enemy

base.

Here the steps are numbered but certain actions, such as issuing orders to the initially

available workers, are concurrent, so it is not a strict sequence of actions.

2.1.2 Artificial Intelligence in RTS games

Traditionally, Al in computer gaming has been conceived pragmatically; that is, it is not
the research of Al what really matters but rather getting software capable of either
beating humans or providing a good gaming experience. That is the reason why Al in

18

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

games is generally understood as any technique that leads to an appearance of
intelligence. Some of these techniques are drawn upon classical Al, but their origin may
be from any other field. Besides most of the games are too complex to be solved using a
single specific technique, so game Al is an unspecific term. A classical example is
computer chess, which is often roughly based on a minimax algorithm with pruning
along with many other techniques like opening and endgame databases and
transposition tables [Computer chess]. However, commercial videogames are generally
not as Al friendly as classical games and seldom use real Al implementations; for
instance, only a handful first person shooter games, which are one of the most popular
genres, use real Al techniques for their computer players, as done in FEAR, where

limited automated planning is used [Orkin, 2006].

Due to this conception of game Al and the many kind of games that exist, developing
computer players for commercial games is usually regarded as a doubtful method of
contributing to Al research. In the particular case of RTS games, only pathfinding
techniques are extensively used. Actually, RTS computer players are nowadays
considerably weaker than human players and an average player can beat them with no
difficulty. In most of the cases, computer players consist of a set of rules that represent
the transitions of a finite state machine designed by the developer. This leads to a rigid
behavior in which the same strategy is used and there is no adaptation at all, which
makes up for a very predictable player. Funny enough, it is a proven fact that in order to
try to pose a challenge to human players computer players in RTS cheat, as they always
have complete information and usually have advantages over the human players in the
hardest Al levels, such as getting more resources or having tougher units --this is not

told to the player, though.

Fortunately, some research dealing with Al has been done lately in RTS games, mainly
from Al research groups instead of game developing companies. With the upcoming of
new tools like Wargus and ORTS, researchers have found new ways of working with
RTS games. An example of this trend of research is Aha's work [Aha, Molineaux and
Ponsen, 05], in which he studies the use of case-based plan selection to design a client
that fully plays a standard RTS game simulated with Wargus with a certain degree of
success. This client is compared to model computer players with fixed strategies and
with a genetic algorithm developed by Ponsen and Spronck, another way of trying to

solve the problem through Al techniques. As for automated planning, research is still in

19

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

its earliest stages, with few publications focusing on this issue. To show how little has
been done up to now on the subject we will comment the most recent publication with
impact, which has been the one released by Chan and Fern in the 2007 ICAPS [Chan et
al., 07]. In this paper the problem to solve has been relaxed to three resource gathering
problems: Gather a certain amount of gold, produce a certain number of workers (which
contribute to gathering resources) and produce a certain number of soldiers (which do
not contribute to gathering resources). The domain includes a mine, a base, a number of
initial workers and the possibility to build additional workers or soldiers by spending
gold. The main difficulty is finding the number of workers that must be build to
minimize the time, and the solution proposed by the authors is to solve using planning
as many problems as possible numbers of workers within a reasonable range in real
time, which adds very little to a real RTS computer player. Actually, the most
interesting point for this work is that it uses PDDL 2,1, the same language that will be
used for our domain. Another work worth of mention is the one published by King and
Atkin in 2002 [King, Atkin and Westbrook, 02], in which they presented a general
purpose, semi-declarative agent control language known as Tapir that extends and
enhances the Hierarchical Agent Control (HAC) architecture with the purpose of using
planning in multiagent domains, but apart from that, no other RTS-related researches

have meant an advancement in Al.

2.1.3 Challenges of RTS games

To understand why RTS games are so practical for real-time Al research, one must
analyze the different problems that arise when designing computer players. Most of
these problems come from the existing differences between classical and RTS games
and thus remain unsolved given the little advance in Al research in the genre. The main

challenges that RTS games offer are the following:

e Real Time reasoning: The staple of the genre. Computer players have to take
decisions as the situation change, forcing them to be not only fast enough to
come with coherent actions in a limited amount of time, something that can
happen in fast paced non real time games, but also to adapt and replan following
the time flow. This is an extremely complex problem and generally demands

20

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

discretization of time and reusing previous computations.

e Complex worlds: Worlds in RTS games, though mostly being based on a grid,
are generally too large and thus classical interaction with it as done in board
games is not possible. Besides the terrain usually has distinct features that
heavily influence the game, so computers players not only have to take into
account distance and obstacles but also the characteristics of the terrain.
Abstraction is compulsory in most cases, using graphs over connected areas and
chokepoints with critical points such as resources and bases having a key role.

e Uncertainty: RTS games cope in most of the cases with incomplete information
because of fog of war or other mechanics and often the game is stochastic as an
action may have several possible outcomes depending on how the game is
designed. This means that players must act under uncertainty, a very complex
task for computer players implying both information gathering and formulating

plausible hypothesis.

e Learning: RTS games are very dynamic as players have at their disposal
different strategies that can be changed throughout the game. Opponent
modeling and learning is the main factor that allows a player to adapt and react
accordingly to his opponent's actions, something humans are naturally adept at
but computer players are not.

e Resource and technology management: To win a game there are important
problems that must be solved prior to attacking and defending to achieve the
winning condition. These problems are usually how to manage the economy and
the technology development. These key problems are in fact soft goals that lead
once achieved to the conditions that allow the victory, adding complexity when
defining the objectives due to the balance that has to be kept between the

military issues and these two aspects.

e Collaboration: RTS games contain not only multiple units per player, but also
are often multiplayer games in which teams of players are formed. This means
that there are two issues regarding collaboration: units of the player must act in a
coordinated fashion in order to achieve complex goals that require a certain
degree of collaboration and different players in the same team must
communicate and help each other both defensively and offensively to beat other
teams.

21

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

The sum of all these problems make RTS games a challenging (if complex)
environment in which test new approaches from an Al point of view. This, added to the
fact that RTS games encourage competitive playing, is the main reason why they are
appealing to the academical community as a testbed besides their practical applications.

2.2 ORTS

ORTS stands for Open Real Time Strategy and is a free RTS game engine which allows
users to define RTS games in form of scripts and to connect arbitrary game client software
ranging from 3D graphical user interfaces to distributed AI systems. ORTS has been
throughly described by its creator, Michael Buro [Buro, 02], so in this section this engine
will be described focusing on its features, the way it works and how it is a useful tool for

Al research.

2.2.1 Features of ORTS

Conceived in 2001 by Michael Buro and developed by Tim Furtak and several other
contributors from the University of Alberta, ORTS stands as an useful tool for Al
research by providing an environment in which design intelligent players for RTS
games. Its main function is to be able to recreate RTS games with a complexity similar
to that of the current commercial RTS games in terms of game design. It implements
some features that provide an experience similar to an actual game with the advantage
that it has been designed for research, so experiments with Al techniques can be done
under realistic conditions and without losing the gaming experience. The main features
of ORTS are the following:

e Real Time environment: ORTS is completely real time, the interactions
between players are asynchronous. Contrary to regular RTS games, in which a
lagging player causes the game to halt until it resumes activity or finally
disconnects, the game in ORTS is not interrupted and all the non-valid actions
sent by the player will just be ignored as they are no longer possible, taking a
more realistic approach. No discretization or turns exist, but this can be
simulated using game scripting.

22

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

Terrain: Terrain is completely customizable. Several levels or layers can be
created. Usually three levels coexist, plain ground, elevated ground and air, but
games are by no means limited to this. Obstacles, ramps, plateaus, impassable
terrain, water portions,... are all possible.

Action computation: Players compute actions for a set of objects at their
command. The computational model can range from local to global with respect
to the objects in order to reflect given command hierarchies and different levels
of physical restrictions imposed by the world.

Server-client model: To play a game, a machine working as a server is needed.
Clients connect to this machine receiving views of the world (the state of the
game having into account which objects are visible to the player and which
objects are not) and sending actions back to the server, where the effects of the

actions are solved.

Complex interaction of units: Units are not limited to basic actions such as
moving and attacking. Gathering, colliding or recreating complex effects that
simulate the so called skills of the units that appear in commercial games are
features of ORTS.

Flexible game specification: ORTS is a generic RTS game programming
environment. This means that the actual game played when using the ORTS
system is not fixed but scripted. A script is used to define the whole game: types
of terrains, unit properties such as size, sight range and maximum speed, unit
actions (including complex skills), scores, resources, winning conditions, team
configuration, etc... This allows both to create specific situations for formal

experimentation and appealing games for human players.

Client customization: Clients connect to the server via sockets using an open
protocol. Apart from that, clients are not restricted in any way, meaning that the
player can use any technology, create his own interfaces, add AI modules,... This
means that clients can implement anything from fancy graphics to autonomous
or auxiliary clients that help the player to play. For example a player can use a
3D interface with customized buttons for the game, while other uses a 2D
interface with Al modules that help him with low level tasks such as gathering
resources, while a third can implement an autonomous client that plays on his

own with no need for interface as there is no human interaction.

Graphical user interface: Even though players are free to design their clients, a

23

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

fairly complete 3D interface is already available, along with an older 2D
interface. This interface, while not as fancy as the ones used in commercial RTS

games, is appealing enough to give the look and feel of a real game apart from

being very well integrated with the game definition system.

Figure 3.: ORTS's 3D Graphic User Interface.

e Active community: ORTS has been developed by researchers interested in
spreading the use of their tool as much as possible. Therefore, annual
competitions are held where the participant explain and share their clients and
works about the state of ORTS are regularly published. Thanks to this, part of
the community has been interested in it, participating and even collaborating in
the development of ORTS.

e Low Level AI modules: Thanks to the experience accumulated after the

24

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

competitions, several low level Al modules based on real clients have been
released and are publicly available for other developers. Some modules include
resource gathering, squad formation, pursuing, attacking an area,... This eases
the task of developing a fully functional client and allows to focus on other
aspects of the game.

2.2.2 ORTS versus commercial RTS games

Initially ORTS was created because of how inappropriate commercial RTS games are
for Al research. This is not because the industry opposes to using their games for Al
research or because they try to close their projects as much as possible (actually this is
not at all true, several RTS games provide map editors and can be modded by the
playing communitiy), it is just that the philosophy of the game developing enterprises is
not creating the strongest computer player, as this would frustrate the buyers, but to
provide computer players that enhance the replayability of the game. That, added to the
limitations this kind of projects have (release date, priority of graphics over Al behavior
for marketing reasons, budget,...) is what made of these games a not very useful tool for

the academic community.

Trying to solve this situation, ORTS came up with a few innovative characteristics that
separates it from commercial RTS game and that constitute its foundations. The main
differences will be analyzed one by one and then resumed in a comparative table.

e Cost: Commercial RTS games are produced for profit therefore having an
associate prize to them. On the other hand, ORTS is released under the GNU
Public License [GPL], which means that anyone can download the source code
at no cost in order to learn how the system works and to contribute to the project
by submitting bug fixes and adding new features. It also means that projects that
incorporate ORTS code need to release their source code as well. Being free
anybody can try it and work on it without economical inversion, which greatly
helps to popularize it.

e Game design: Each commercial RTS game is a single game and stays like that

25

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

with only a few variations. ORTS 1s not a game, it is an engine which works
with scripted games, so the number of games that can be created and played are
unlimited. Besides researchers can modify and customize both the tool and the
games to their needs, which leads to a broader range of possible experiments.

e Hack-free environment: As we mentioned earlier computer players in
commercial RTS games cheat in order to pose a challenge to human player, so if
a competition was held using Al clients the possibilities of cheating happening
are high. However this is not possible in ORTS as the game server maintains the
entire world state and sends only visible information to players which connect
from remote machines and send back actions that are executed on the server side

and never on the client.

e Custom clients: Commercial RTS games are closed projects and thus the clients
cannot be modified at all, which restricts the players. In ORTS the only thing
clients must comply to is the communication with the server. Other than that
they can be implemented in any way, creating and modifying interfaces and Al
modules at will. This also allows creating remote or distribute clients in which
more computational power can be dedicated to Al as opposed to commercial
RTS games, which use most of the CPU time rendering the 3D graphics and
neglect Al performance.

26

Modelling a RTS Planning Domain with Cost Conversion and Rewards

Vidal Alcazar Saiz

Feature Current Commercial RTS Games ORTS

Cost ~US$ 50 Free

License Closed Software, no code changes | GPL
possible

Topology Peer-to-Peer: The entire game Server-Client: Server simulates
simulation is run on each peer node |world and sends local views to

clients

Communication |Closed Open, specification publicly

protocol available

Game High for commercial reasons User defined

Complexity

Game Fixed, though some games offer Flexible, games are scripted

Specification map editors and modding tools

GUI Nice looking but not modifiable by | Either the standard one or one
the user created by the user

CpPU High due to the graphics Depends on the client

requirements

Network Low: Only clicks and keystrokes are | Medium: Views and actions are

requirements sent sent back and forth

Unit control

Essentially sequential: clicks and
keystrokes + predefined low-level

unit behaviour

Parallel: one command per unit
per simulation frame and atomic
actions + no predefined low-

level behaviour

Al Al code for all players runs on all Al is local to each client
peer nodes
Remote Al Not supported Depends on the client

Table 1: Differences between commercial RTS games and ORTS

2.2.3 Functioning of ORTS

27

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

Now that the main features that define ORTS have been introduced the only thing left is
to give a bit of insight about the inner functioning of ORTS. The three most relevant

aspects are vision, game scripting and networking.

e Vision: ORTS is a server-client based platform in which clients do not have free
access to the game state. Rather every frame the server computes for every
player which objects he sees at that moment and sends their information to that
player, which will answer with a set of actions associated to those objects. The
determination of what is seen is based on which regions of the world are
currently visible to a client. This is the union of what can be seen by all objects
currently under the client’s or an ally’s control. The objects can see only what is
within their defined range of vision, taking into account obstructions caused by

terrain features such as plateaus, but not obstruction by other units.

The tile-based nature of the ORTS world naturally lends itself to describing an
object’s visual field in terms of the regions visible from the tiles it is occupying.
Regardless of the criteria used to determine visibility, the highly static nature of
terrain obstructions allow the results of those visibility computations to be
reused for any object looking out from that tile afterward. This ability to avoid
re-computation for minor changes in position greatly mitigates any coarseness in
the visual description. Moreover, the level of coarseness may be adjusted by
changing the number of tiles used to describe the world.
Unlike an incremental solution, where the change in position of each unit must
be taken into account when determining the visible tiles, ORTS generates the
entire view independent of the last cycle. As a result, it is unaffected by changes
in unit positions or by large portions of the view being quickly hidden and
revealed as would be the case when moving troops through highly obstructed
terrain. Because the number of interactions (collisions, enemy encounters, etc.)
increases with the number of moving objects, computations have been optimized
to reduce the resources needed in this worst case. The execution time of the
vision computation is linear in the number of objects N, the number of tiles 7,
and the number of players P, for a time complexity of O(N+P-T).

e Game Scripting: The scripting engine performs the interesting game-specific
logic and allows for flexible game definitions and client interfaces. High
performance tasks common across a large number of possible RTS games such

as accurate unit motion and unit vision in the presence of terrain are handled

28

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

separately by the server. Everything else, such as weapons and special abilities,
is scripted as part of the game definition. The scripting language was designed to
provide a convenient way to define unit types and actions. Unit definitions are
given in the form of blueprints which list named (usually) integer attributes and
actions. The blueprints use a loose multiple inheritance system, allowing them to
be combined and nested. New unit types can easily be constructed from
functional components. In the client the object creation system is used to create
GUI widgets such as buttons and status windows.

When the client receives the game description, which includes unit blueprints, it
can locally extend those blueprints by adding extra attributes, sub-objects, or
actions. The client can use this functionality to write wrappers for complex
actions, add simple background Al, or add event handlers for when an attribute
changes. By adding a 3D model sub-object the client specifies how an object
will be represented in the world and allows for context sensitive animations. The
client extends the scripting language functionality by registering special
functions that allow access to OpenGL commands for drawing bitmaps and then
simply calling those functions within the script. Mouse and keyboard events
received by the client are transferred to the script by calling the actions of a
special root GUI object, passing the event information as parameters. This object
recursively calls the interface actions of its children until it is handled. Since the
scripting language was designed to be able to perform reasonably complicated
game logic, eventually errors will occur that cannot be simply debugged by
inspection. At this point it becomes invaluable to have some way for the script to
write information to the console or to inspect the current state. As a compiler
option the interpreter can maintain a stack trace of the current execution with a
printout of line numbers and the statement being evaluated at each step. This
trace is automatically printed when a trappable error occurs in the script, and can
be printed manually from inside a debugger such as gdb.

Because it is relatively trivial to extend the scripting language by adding external
C functions it is tempting to do so whenever additional functionality is needed.
This can quickly lead to numerous special purpose functions and bloated syntax.
Consider the problem of implementing an STL-like vector container. One option
is to try to force the language to do something it was never intended to, perhaps
by implementing a complicated linked list. Another is to add a C function that
returns a pointer to an actual STL vector, with additional functions for adding to

it, sorting, etc. To help make the scripting language extensible, objects in the

29

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

script are all derived from a common base class, with game objects being only
one possible option. To address the previous concern, wrappers have been
written for STL vectors and sets, allowing them to be created in the same
manner as classes described by blueprints. By modifying the new objects'
incremental update functions the container can be used as a sub-object within
game units. The graphical client uses derived classes for 3d models and particle
systems to attach these things to objects in the game. Script actions take generic
script variables as parameters, which may be object pointers, integers, or
something else. The next two figures show how the scripting language works,
being the first a simple example of a standard unit, in this case a marine, and the

second a more complex definition of a homing missile:

blueprint marine

is generic_unit # include a set of common attributes and default values
class kevlar armor # create a sub-object of type "kevlar" named "armor"
class rifle weapon # the rifle sub-object has already been defined and

has a "shoot" action defined

make zcat constant and assign it the enum ON_LAND
setf zcat ON_LAND
setf max_hp 100
set hp 100
setf sight 6
setf radius 5
set max_speed 3
end

Figure 4: Marine blueprint

blueprint missile
has core_attr
has movement
setf shape CIRCLE
setf radius 3
setf max_speed 20
set speed 0
setf zcat IN_AIR
setf targetable 0
setf invincible 1
var hidden det_range 3
var hidden blast_range 20
var hidden min_dmg 200
var hidden max_dmg 350
var collides 0 # set the collision mask to ignore all other objects

30

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

this action takes one object as a parameter, no integer variables, and no hidden variables.
action track_obij(targ;;) {

gob e;

int dmg, damage_type;

damage_type = this.damage_type;

if (targ.targetable < 1) break;

f (distance(this,targ) <= this.det_range) {
#"-1" -> not owned by any player
e = create("explosion", -1);
e.x = this.x;
e.y = this.y;
e.zcat = targ.zcat;
e.radius = this.blast_range;
e.damage_type = EXPLOSIVE;
add the "boom" action to the action queue and
execute it sometime in the current tick
e.boom(;this.min_dmg, this.max_dmg, 0;) in 0;
mark the missile as dead - it can still act,
but cannot queue any more actions, and will
be deleted at the end of the current tick
kill(this);

}else {
move events are handled after script actions.
the object isn’t teleported, it walks/flies to
the target location at its speed
move(this; targ.x, targ.y);
accelerate the missile - applies to above command
this.speed += 4;
if (this.speed > this.max_speed)
this.speed = this.max_speed;
execute this action again in 1 tick
without "in 1" action would be called immediately
this.track_obij(targ;;) in 1;

end

Figure 5: Homing missile blueprint

e Networking: In each cycle the server sends the state of the world to each client
as they perceive it and the client responds by sending a list of actions for the
objects it has control of. As the world is explored and portions of the map are

revealed, the server sends a list of the newly visible tiles along with a description

31

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

of their topography (height, ground type, whether or not the tile slopes in a
particular direction). Objects are entirely described by the index of the blueprint
used to create the object, and a vector of their current attribute values.
Subsequent viewings of the same object (if the object has not been lost from
sight) are given in terms of the attribute changes from the last frame.

With the increasing speed of network communication, such data rates are within
the limits of current high—speed Internet connections. By applying a moderate
amount of compression to the client’s view prior to sending it, the necessary
throughput is greatly reduced to acceptable levels for even large multi—player
games. Experimental results using ORTS suggest that the main communication
bottleneck when using server—side simulation and high—speed connections such
as cable-modems or DSL is lag rather than data throughput. Lag is induced by
data transfer over networks and by associated computational overhead such as
message compression/inflation and updating data structures on both
communication ends. For the sake of simplicity the first ORTS implementation
totally ignored network lag and indeed used blocking TCP I/O on both the server
and client side.

2.3 Automated Planning and PDDL

Among all the different branches in Al, planning has proven to be a relevant approach to
many different problems in which a certain degree of autonomy must be attained.
Computer players RTS games must be completely autonomous intelligent agents which
must reach one or more goals through strategies or action sequences, hence the
adequateness of this technique for our work. In this section, automated planning and its

most popular language for domain and problem definition, PDDL, will be described.

2.3.1 Overview of Automated Planning

Planning in Artificial Intelligence can be defined as decision making about the actions
to be taken. This sequence of actions is the strategy that will be followed to achieve a

32

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

given goal defined in the problem and is called plan. Impediments for the success of Al
in producing genuinely intelligent beings are related to perceiving and representing
knowledge concerning the world. The real world is very complicated in all its physical
and geometric as well as social aspects, and representing all the knowledge required by
an intelligent being may be too inflexible and complicated by the logical and symbolical
means almost exclusively used in artificial intelligence and in planning. Al planning
(like knowledge representation and learning techniques in Al in general) are currently
best applicable in restricted domains in which it is easy to identify what the atomic facts
are and to exactly describe how the world behaves. These properties are best fulfilled by
systems that are completely man-made, or systems in which planning can view the

world at a sufficiently abstract level.

Research that has lead to current Al planning started in the 1960’s in the form of
programs that tried to simulate problem solving abilities of human beings. One of the
first programs of this kind was the General Problem Solver (GPS) by Newell and Simon
[Ernst et al., 1969]. GPS performed state space search guided by estimated differences
between the current state and the goal states.

At the end of 1960’s Green proposed the use of theorem-provers for constructing plans
[Green, 1969]. However, because of the immaturity of theorem-proving techniques at
that time, this approach was soon mostly abandoned in favor of specialized planning
algorithms. There was theoretically oriented work on deductive planning which used
different kinds of modal and dynamic logics [Rosenschein, 1981] but these works had
little impact on the development of efficient planning algorithms. Deductive and logic-
based approaches to planning gained popularity again only at the end of the 1990’s as a
consequence of the development of more sophisticated programs for the satisfiability

problem of the classical propositional logic [Kautz and Selman, 1996].

One of the most well known early planning systems is the STRIPS planner from the
beginning of the 1970’s [Fikes and Nilsson, 1971]. The states in STRIPS are sets of
formula, and the operators change these state descriptions by adding and deleting
formula in the sets. Heuristics similar to the ones used in the GPS system were used in
guiding the search. The definition of operators, with a precondition as well as add and

delete lists, corresponding to the facts that respectively become true and false, and the

33

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

associated terminology, is still in common use, although restricted to atomic facts, that
is, the add list is simply the set of state variables that the action makes true, and the

delete list similarly consists of the state variables that become false.

Starting in the mid 1970’s the dominating approach to domain-independent planning
was the so-called partial-order [Sacerdoti, 1975], which remained popular until the
mid-1990’s and the introduction of the Graphplan planner [Blum and Furst, 1997]
which started the shift away from partial-order planning to types of algorithms that had
earlier been considered infeasible, even the then-notorious total-order planners. The
basic idea of partial-order planning is that a plan is incrementally constructed starting
from the initial state and the goals, by either adding an action to the plan so that one of
the open goals or operator preconditions is fulfilled, or adding an ordering constraint on

operators already in the plan in order to resolve a potential conflict between them.

In parallel to partial-order planning, the notion of hierarchical planning emerged
[Sacerdoti, 1974], and it has been deployed in many real-world applications. The idea in
hierarchical planning is that the problem description imposes a structure on solutions
and restricts the number of choices the planning algorithm has to make. A hierarchical
plan consists of a main task which is decomposed to smaller tasks which are recursively
solved. For each task there is a choice between solution methods. The less choice there
is, the more efficiently the problem is solved. Furthermore, many hierarchical planners
allow the embedding of problem-specific heuristics and problem-solvers to further

speed up planning.

Nowadays and thanks to the success of different trends in automated planning, many
different approaches coexist. Generally the modeling and algorithms used by the planner
are the differencing characteristics between them, although most of them can be
classified not only by their design but also by the kind of problems they are able to
solve. This set of problems establishes the division between different branches of
automated planning and their characteristics are usually the challenges planners must
cope with. Several important aspects in planning problems are the following:

e Determinism: In the simplest form of planning the state of the world at any

34

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

moment is unambiguously determined by the initial state of the world and the
sequence of actions that have been taken, making the world deterministic. The
assumption of a deterministic world holds in many simple planning problems.
However, when the world is modeled in more detail and more realistically, the
assumption does not hold any more: the plans have to take into account events
that take place independently of the actions and also the possibility that the
effects of an action are not the same every time the action is taken, even when
the world appears to be the same. Nondeterminism comes from two different
sources: first, any feasible model of the world is very incomplete, and events that
are possible as far as our beliefs are concerned can be viewed as
nondeterministic; second, many actions themselves are by their nature
nondeterministic, either intentionally or unintentionally, like the actions in which

the outcome depends on a probability.

e Observability: In deterministic planning problems with one initial state there is
no need to use observations as the state of the world after taking certain actions
can be completely predicted. Hence a plan, if one exists, is simply a sequence of
actions. However, when the actions or the environment can be nondeterministic,
or when the initial state is not exactly known, it is not in general possible to
reach the goals by using one fixed sequence of actions. The actions have to
depend on the observations. There are two possibilities: first, planning could be
interleaved with plan execution: only one action is chosen at a time, it is
executed, and based on the observations the next action is chosen, and so on;
second, a complete plan is generated, covering all possible events that can
happen, and it is executed, without further planning during execution. These two
approaches are computationally very close, but the first approach does not
require explicitly representing all the action sequences that might be needed, it
only has to find a guarantee that such action sequences exist. The possible
observations have a strong impact on how exactly the actual state of the world
can be determined: the more facts can be observed, the more precisely the
current state of the world can be determined, and the better the most appropriate
action can be chosen. If there is a lot of uncertainty concerning the current state
of the world it may be impossible to choose an appropriate action. If the current
state can always be determined uniquely we have full observability. If the
current state cannot be determined uniquely we have partial observability, and

planning algorithms are forced to consider sets of possible current states.

35

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

e Time: Most work on planning uses discrete time and actions of unit duration.
This means that all changes caused by an action at time point t are visible at time
point t+1. So changes in the world take only one unit of time, and what happens
between two time points is not further analyzed. More complicated models of
time and change are possible, even though most types of problems can be
analyzed in terms of discrete time by making the unit duration sufficiently small.

e Control information and plan structure: In the basic planning problem a plan
is to be synthesized based on a generic description of how the actions affect the
world. There may be, however, further control information that may affect the
planning process and the plans that are produced. In hierarchical planning, for
example, information on the structure of the possible plans is given in the form
of a hierarchical task network, and the plans that are produced must conform to

this structure, which may substantially improve the efficiency of planning.

e Plan quality: The purpose of a plan is often just to reach one of the predefined
goal states, and plans are judged only with respect to the satisfaction of this
property. However, actions may have differing costs and durations, and plans
could be assessed in terms of their time consumption or cost. The classical
measure for quality plan has been plan length; nevertheless, modern planners
often support fluents and time flow, so the research is steadily turning into

getting better plans based on minimizing or maximizing a given variable.

2.3.2 Bases of Heuristic Planning

The main characteristic that defines planning is the search done through a set of states,
called the state space. This state space is the combination of all the possible values of
the variables that define the problem. States and the connections between them can be
represented in several ways, mostly related to finite automata theory. The most popular
ways of representing the state-space is using transition systems, in which graphs whose
nodes are the different states and whose arcs are the transitions between them are used
(or alternatively incidence matrix-based representations); propositional logic, in which a
relation of truth must be proven between the initial state and the goal using propositional

formulas as equivalent to state transitions; and succinct transition systems, in which the

36

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

representation of the states of a transition system is done using valuations of state

variables instead of enumerating them as in classical transition systems.

Searching through the space is done using a given algorithm. The simplest possible
planning algorithm generates all states (valuations of the state variables), constructs the
transition graph, and then finds a path from the initial state to a goal state. The plan is
then simply the sequence of operators corresponding to the edges on the shortest path
from the initial state to a goal state. However, this algorithm is not feasible when the
number of state variables is high, as the number of states is 2" where n is the number of
variables, and an informed algorithm, this is, an algorithm that uses an heuristic function
to evaluate how far from the goal is the evaluated state, must be used. This form of plan
search can be easiest viewed as the application of general-purpose search algorithms
that can be employed in solving a wide range of search problems. The best known
heuristic search algorithms are A*, IDA* and their variants [Hart et al., 1968; Pearl,
1984; Korf, 1985] which can be used in finding shortest plans or plans that are
guaranteed to be close to the shortest ones as long as the heuristic function evaluates
accurately for the given problem.

There are two main possibilities to find a path from the initial state to a goal state:
traverse the transition graph forwards starting from the initial state, or traverse it
backwards starting from the goal states. The main difference between these possibilities
is that there may be several goal states (and one state may have several predecessor
states with respect to one operator) but only one initial state: in forward traversal we
repeatedly compute the unique successor state of the current state, whereas with
backward traversal we are forced to keep track of a possibly very high number of
possible predecessor states of the goal states. Backward search is slightly more
complicated to implement but it allows to simultaneously consider several paths leading
to a goal state.

The most important heuristics are estimates of distances between states. The distance is
the minimum number of operators needed for reaching a state from another state. When
search proceeds forwards by progression starting from the initial state, we estimate the
distance between the current state and the set of goal states. When search proceeds

backwards by regression starting from the goal states, we estimate the distance between

37

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

the initial state and the current set of goal states as computed by regression. There are
many kind of heuristics, being some of the more popular for general problems

admissible max heuristic, inadmissible max heuristic and relaxed plan heuristic.

2.3.3 PDDL 2.1

Every two years since 1998, the International Planning Competition are held to
compare state of the art planners and encourage further research in the area. Until the
creation of the IPC, planners had their own syntax to define domains and problems
(even though many of them accepted STRIPS or languages based on it). To created a
base of planning problems that could serve as a benchmark for comparisons between the
planners, PDDL was created. PDDL stands for Planning Domain Definition Language
and originally contained STRIPS, ADL and some other minor features, and had a great
impact in the development of new planning system as many of them adapted themselves
to it to avoid being left out of the most popular events in the area. Basically it departed
from STRIPS, being a action-centered-language in which all the operators are actions
that can have pre- and post-conditions. The syntax is similar to the one used in Lisp, and
separates domain specifications (mainly composed by actions) and problems (composed
by facts, goals and an initial state), which allows for different problems to be created for
the same domain.

A significant change was made in the third IPC held in 2002. Due to the limitations
classical planning problems had and in order to orientate the research towards a more
practical approach, numeric and time reasoning were introduced. Besides, these
considerations were already part of several planners, but until then these particular
features could not be tested. Special attention was given to ensure that the language
could express physical properties of the world instead of forcing domain designers to
adapt to the constraints of the language and to make it backwards compatible with
previous versions of the language.

PDDL 2.1 is structured in levels of increasing expressive power. STRIPS is level 1, the

38

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

numeric extensions are level 2, discretized durative actions are level 3, continuous
durative actions are level 4 and a set of additional features for modeling spontaneous
events are level 5. In the competition and based on the state of the art planners
capability, only levels 1, 2 and 3 were used, leaving the more complicated levels as
guidelines for further development in planning. This gives the opportunity for a
planning system to reject attempts to plan with domains that make use of more advanced
features of the language than the planner can handle. Syntax checking tools can be used
to confirm that the requirements flags are correctly set for a domain and that the types
and other features of the language are correctly employed.

The parameterization of actions depends on the use of variables that stand for terms of
the problem instance as they are instantiated to objects from a specific problem instance
when an action is grounded for application. The pre- and post-conditions of actions are
expressed as logical propositions constructed from predicates and argument terms
(objects from a problem instance) and logical connectives. PDDL 2.1 also includes the
ability to express a type structure for the objects in a domain, typing the parameters that
appear in actions and constraining the types of arguments to predicates, actions with
negative preconditions and conditional effects and the use of quantification in
expressing both pre- and post-conditions. These extensions are essentially those
proposed as ADL [Pednault, 1989]. Something PDDL 2.1 lacks though is the use of
structures in domain definitions, which prevents using hierarchical planners like SHOP
[Nau, Cao, Lotem and Muﬁoz—AVila, 1999].

The original PDDL provides support for numbers by allowing numeric quantities to be
assigned and updated. However it was neither extensively used nor standardized, so one
of the first decisions made in the development of PDDL 2.1 was to propose a definitive
syntax for the expression of numeric fluents. Numeric expressions are constructed,
using arithmetic operators, from primitive numeric expressions, which are values
associated with tuples of domain objects by domain functions. As presented below, the
functions “capacity” and “amount” associate the jug objects with numeric values
corresponding to their capacity and current contents respectively. A prefix syntax for all
arithmetic operators, including comparison predicates, is used in order to simplify
parsing. Conditions on numeric expressions are always comparisons between pairs of
numeric expressions. Effects can make use of a selection of assignment operations in

order to update the values of primitive numeric expressions. These include direct

39

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

assignment and relative assignments (such as increase and decrease). Numbers are not
distinguished in their possible roles, so values can represent, for example, quantities of

resources, accumulating utility, indexes or counters.

(define (domain jug-pouring)
(:requirements :typing :fluents)
(types jug)

(:functions
(amount ?j - jug)
(capacity ?j —jug))

(:action pour
parameters (?jug1 ?jug2 - jug)
:precondition (>= (- (capacity ?jug2) (amount ?jug2)) (amount ?jug1))
-effect (and (assign (amount ?jug1) 0)
(increase (amount ?jug2) (amount ?jug1)))

Figure 6: Use of numeric expressions in PDDL 2.1

Numeric expressions are not allowed to appear as terms in the language (that is, as
arguments to predicates or values of action parameters). Numbers do not exist as unique
and independent objects in the world, but only as values of attributes of objects. Models
are object-oriented in the sense that all actions can be seen as methods that apply to the
objects given as their parameters. This object-oriented approach is reflected in the way
in which numbers are manipulated only through their relationships with the objects that
are identified and named in the initial state. Besides, many current planning approaches
rely on being able to instantiate action schemas prior to planning, and this is only
feasible if there is a finite number of action instances. The branching of the planner’s
search space, at choice points corresponding to action selection, is therefore always over
finite ranges. The use of numeric fluent variables conflicts with this because they could
occur as arguments to any predicate and would not define finite ranges.

The adoption of a stable numeric extension to the PDDL core allowed to introduce a
further extension into PDDL2.1, namely a new (optional) field within the specification

of problems: a plan metric. Plan metrics specify, for the benefit of the planner, the basis

40

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

on which a plan will be evaluated for a particular problem. The same initial and goal
states might yield entirely different optimal plans given different plan metrics provided
the planner supports this feature. The value total-time can be used to refer to the
temporal span of the entire plan. Other values must all be built from primitive numeric
expressions defined within a domain and manipulated by the actions of the domain. As a
consequence, plan metrics can only express non-temporal metrics in PDDL2.1 domains
using numeric expressions. Any arithmetic expression can be used in the specification
of a metric as there is no requirement on the expression to be linear. It is the domain
designer’s responsibility to ensure that plan metrics are well-defined (for example, do

not involve divisions by zero).

Metrics are described in the problem description, allowing to easily explore the effect of
different metrics in the construction of solutions to problems for the same domain. In
order to define a metric in terms of a specific quantity it is necessary to instrument that
quantity in the domain description. The case in which plans are constrained by finite
availability of resources, is an important and interesting form of the planning problem,
but the case in which plans of arbitrarily high utility can be constructed, is obviously an
ill-defined problem, since an optimal plan does not exist. It is non-trivial to determine
whether a planning problem provided with a metric is ill-defined. In fact, as shown in
[Helmert, 2002], the introduction of numeric expressions, even in the constrained way
adopted in PDDL2.1, makes the planning problem undecidable. The problem of finding
a collection of actions which does not consume irreplaceable resources and has an
overall beneficial impact on a plan metric is at least as hard as the planning problem.
Therefore it is clear that determining whether a planning problem is even well-defined is
undecidable. This demonstrates that the modeling problem, as well as the planning

problem, becomes even more complex when metrics are introduced.

Below a whole domain with a problem will be shown to illustrate how minimizing

metrics can be factored in in PDDL 2.1

(define (domain metricVehicle)
(:requirements :strips :typing :fluents)
(:types vehicle location)

(:predicates (at ?v - vehicle ?p - location)
(accessible ?v - vehicle ?p1 ?p2 — location))

41

Modelling a RTS Planning Domain with Cost Conversion and Rewards

(:functions

(fuel-level ?v - vehicle)
(fuel-used ?v - vehicle)
(fuel-required ?p1 ?p2 - location)
(total-fuel-used))

(:action drive

parameters (?v - vehicle ?from ?to - location)
:precondition (and (at ?v ?from)

(accessible ?v ?from ?to)

(>= (fuel-level ?v) (fuel-required ?from ?t0)))
:effect (and (not (at ?v ?from))
(at ?v ?to)
(decrease (fuel-level ?v) (fuel-required ?from ?t0))
(increase (total-fuel-used) (fuel-required ?from ?to))
(

increase (fuel-used ?v) (fuel-required ?from ?t0)))

Figure 7: Domain definition for metrics

(define (problem metricVehicle-example)
(:domain metricVehicle)

(:objects

(sinit

truck car - vehicle
Paris Berlin Rome Madrid — location)

(at truck Rome)

(at car Paris)

(= (fuel-level truck) 100)

(= (fuel-level car) 100)
(accessible car Paris Berlin)
(accessible car Berlin Rome)
(accessible car Rome Madrid)
(accessible truck Rome Paris)
(accessible truck Rome Berlin)
(

(

(

(

(

(

(

(

accessible truck Berlin Paris)

fuel-required Paris Berlin) 40)
fuel-required Berlin Rome) 30)

(

(

(fuel-required Rome Madrid) 50)
(fuel-required Rome Paris) 35)
(
(
(

fuel-required Rome Berlin) 40)
fuel-required Berlin Paris) 40)
total-fuel-used) 0)

Vidal Alcazar Saiz

42

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

(= (fuel-used car) 0)
(= (fuel-used truck) 0)

(:goal (and (at truck Paris)
(at car Rome))

(:metric minimize (total-fuel-used))

Figure 8: Problem definition with metrics

Another of the novelties PDDL 2.1 introduced was the use of durative actions. Durative
actions rely on a basic durative action structure consisting of the logical changes caused
by application of the action. Logical change is always considered to be instantaneous,
therefore the continuous aspects of a continuous durative action refer only to how
numeric values change over the interval of the action. The modeling of temporal
relationships in a discretized durative action is done by means of temporally annotated
conditions and effects. All conditions and effects of durative actions must be temporally
annotated. The annotation of a condition makes explicit whether the associated
proposition must hold at the start of the interval (the point at which the action is
applied), the end of the interval (the point at which the final effects of the action are
asserted) or over the interval from the start to the end (invariant over the duration of the
action). The annotation of an effect makes explicit whether the effect is immediate (it
happens at the start of the interval) or delayed (it happens at the end of the interval). No
other time points are accessible, so all discrete activity takes place at the identified start
and end points of the actions in the plan. Invariant conditions in a durative action are
required to hold over an interval that is open at both ends (starting and ending at the end
points of the action). These are expressed using the over all construct. If one wants to
specify that a fact p holds in the closed interval over the duration of a durative action,

then three conditions are required: (at start p), (over all p) and (at end p).

(:durative-action load-truck
parameters (?t - truck)
(?I - location)
(?0 - cargo)
(?c - crane)

43

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

:duration (= ?duration 5)
:condition (and (at start (at ?t ?I))
(at start (at ?0 ?1))

(at start (empty ?c)
(over all (at ?t ?I))

(at end (holding ?c ?0))

-effect and (at end (in ?0 ?1))

(

(at start (holding ?c ?0))

(at start (not (at ?0 ?1)))

(at end (not (holding ?c ?0)))

Figure 9: An example of durative action

The objective of discrete durative actions is to abstract out continuous change and
concentrate on the end points of the period over which change takes place. The syntax
allows precise specification of the discrete changes at the end points of durative actions.
However, when a plan needs to manage continuously changing values, as well as
discretely changing ones, the durative action language and semantics need to be more
powerful. General durative actions can have continuous as well as discrete effects.
These increase, or decrease, some numeric variable according to a specified rate of
change over time for that variable. When determining how to achieve a goal a planner
must be able to access the values of these continuous quantities at arbitrary points on the
time-line of the plan. The marker “#t” is used to refer to the continuously changing time

from the start of a durative action during its execution.

(:durative-action heat-water
:parameters (?p - pan)
:duration ()
:condition (and (at start (full ?p))

(at start (onHeatSource ?p))

(at start (byPan))

(over all (full ?p))

(over all (onHeatSource ?p))

(over all (heating ?p))

(over all (<= (temperature ?p) 100))

(at end (byPan)))

44

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

-effect (and (at start (heating ?p))
(at end (not (heating ?p)))
(increase (temperature ?p) (* #t (heat-rate))))

Figure 10: An example of continuous durative action

Note that in the example above the duration is not known a priori and rather a
termination condition expressed by the negation of a condition with an “over all”
modifier, temperature > 100, is used. Thus, the temperature will gradually change until
it reaches 100 degrees, theoretically being able to be modified by other actions over the
resolution of this one, although the implications of these interactions over fluents
between different actions is a very complex issue that has to be dealt both by modelers

and by planner developers.

45

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

3. OBJECTIVES

The objectives of this work could be split into two different approaches: a pragmatical one
and a theoretical one. A priori, the main objective is rather straightforward: defining a domain
for PDDL so a planner can be used to play RTS games. This is actually the pragmatical issue
of the work, as departing from its results a client will be created to participate in the 2008
ORTS competition, apart from serving as a base for the development of similar systems in
other RTS games. Implementing computer players for games has been a classical Al work for
those interested in researching and so such an approach is a perfectly valid axis for a work of
this kind.

However, the uses for playing that the definition of the domain have are only a part of the
whole work. To fully understand the scope of this work, one must pay attention to the sum of
challenges solving such a problem poses to a researcher. Forgetting about the context of the
work, which is automated playing in RTS games, what the objective really is is the design a
domain with practical consequences for a real time, stochastic, multi-agent problem with
incomplete information using conventional planning. This means that the problem to be
solved has a complexity similar to that of a real life problem and thus it is right now far from
the reach of most planners. Therefore, the main objective is not completely solving the
problem itself but rather creating a system whose output could be regarded as useful in the

sense that it could be used for real (though not at all optimal) applications.

More important than the output of the planner are the different techniques that will be tested
when defining the domain and the problems. The main intent of the experimentation is not to
end up creating a good enough system, so the results will focus on how positive the use of
certain techniques is for each case and how this could relate to more general problems. Since
little has been done until now in planning with problems of this caliber, comparisons are not
available and the numeric results will not be taken into account but in the cases where the
values are clearly good or bad for the later implementation of the ORTS client.

The system to be created is not a whole functioning client; ORTS will be used as an auxiliary
tool to determine the validity of the experimentations as we lack other ways of testing how
good a domain definition is. Thus, ORTS will be used to generate problems automatically and
eventually to simulate the behavior of an autonomous computer player, but implementing the

player itself is out of the scope of this work, apart from not being particularly useful from a

46

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

scientific point of view once conclusions are obtained from the use of the different approaches

to the problem in planning.

Other than that, another objective for this work is both to encourage the use of realistic
application for planning, showing that is possible to achieve good results with a proper
approach in which has been regarded as a tool for only theoretical for a long time, and to give
publicity to ORTS as a tool for Al research not restricted at all to its practical applications.
Even though ORTS has been around the corner since several years ago, no relevant studies
coming from researchers other than the creators of the tool have been published, which leads
to think that ORTS is still largely unknown in the academical community.

47

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

4. DEFINITION IN PDDL AND CLIENT DESCRIPTION

In this section, the main part of the work will be described. It will be divided in subsections
which will focus on different aspects of the work. Neither results nor conclusions will be
commented here as they will appear in sections 5 and 6. At the end of this document, the
whole domain and an example of problem will be included in annexes B and C respectively.

4.1 Problem description

The problem in which all the study is based is the third game of the annual ORTS
competition held by ORTS developers at the University of Alberta, Canada. The rules and
characteristics will be the ones for the upcoming 2008 competition, which will be held in
August 1*. The game has barely changed from the previous two years, so earlier works
would retain most of their value; however, only two teams of researchers (being one the
ORTS developers) have participated in the previous years, so there is no significant
experience from which departing. Besides, none of the teams used classic Al techniques
apart from pathfinding and several attempts of designing squads of military units using K-
neighbors, sending instead hand coded entries. The description and rules are publicly
available both in the folder trunk/docs/ of ORTS and in the official web page for the 2008
competition [ORTS Competition 2008], but nevertheless we will give an overview of the

most relevant characteristics of this work.

Game 3 is literally called by the organizers the "full-blown RTS" game. The main
characteristics of RTS games appear here, though overly simplified. Basically it is a match
between two players (red and blue) in which the objective is to annihilate the opponent.
Fog of war is always active, there is a simple technology tree and the games involves both
economy and military management, as mineral must be gathered to build new building and
units. Buildings are rectangular shaped objects that are static and whose main role is
producing units. Units are circular shaped objects that can move around at a certain speed
and interact with other objects. The units and buildings are the following:

e Worker: The most basic unit, it gathers resources and builds new buildings. It can

48

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

attack as well, but that is not its main purpose. It is built at the Control Center.
e Soldier: The most basic military unit, it is built at the barracks.

e Tank: The most powerful military unit, it is built at the factory and outperforms

soldiers.

e Control center: The most basic building, produces workers and serves as the point

where the mineral is deployed.

e Barracks: The most basic military building, produces soldiers. To be built needs at

least one control center.

e Factory: The most advanced military building, produces tanks. To be built needs at

least one control center and one barracks.

e Sheep: This unit is neutral and indestructible. It wanders around and serves as a
moving obstacle as opposed to the statical obstacles that minerals and hills

represent.

Time in the games is measured in discrete frames of equal duration. In the competition a
pace of 8 frames per second is used. Once per frame the game server sends individual
game views to all clients which then can specify at most one action per game object under
their control and send this vector of actions back to the server. All received actions are then
randomly shuffled and executed in the server.

Internally, the terrain is represented by a rectangular array of tiles. Each tile is defined by a
corner height value and a terrain type (“ground” or “cliff” in the competition, where
ground tiles are traversable but cliff tiles are not). Tiles can also be split into two triangles
(N or I/1) in which case both triangles can have different types. The height field defined by
the tile corner heights is continuous, so corners shared by neighboring tiles have identical
heights. Objects in the world have a shape and a position on the terrain. The position and
size of objects are represented by integers using a scale of 16 points per tile (“tile points”).
Shapes are circles or axis-aligned rectangles. Circles are specified by their center and

radius. Rectangles are defined by their upper left and lower right coordinates.

A special form of objects are boundaries. These are line segments that objects cannot pass
through which are computed from the tile-based terrain representation by considering

49

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

ground-cliff tile transitions. The server uses these boundary line segments for efficient

collision detection. Both tile and boundary information is maintained in the client.

All objects controlled by a player have a visibility range, defined in terms of tiles.
Visibility is computed from the tile containing the center of the object. Any objects
intersecting a visible tile are themselves visible. All game objects are represented by a
unique object id (an integer). Object ids are assigned deterministically based on the
currently available ids. Any object that goes out of view and subsequently comes back into
view is not guaranteed to be assigned the same id.

All units have a maximum speed with which they can move. This means that within each
simulation frame, the valid moves for an object are constrained to the integer coordinates
that are within a distance of less or equal to the speed of the object. Movement targets are
only constrained to be integers; any location on the game field is acceptable. Every move is
assumed to go in a straight line from the object’s current position to its destination. Objects
move simultaneously and their current locations are rounded to tile points before being
sent to the clients which can lead to temporary and small object overlap on the client side.
In case of collisions with boundaries or other objects, the moving objects are stopped at the
collision location and no damage is inflicted.

If the target location for a move command cannot be reached in one simulation cycle the
object will continue to move in a straight line until a new command is sent or the object
collides with a boundary or game object (or scripted game mechanics cause its motion to
change). It is not possible to do several moves in one tick in order to avoid obstacles, even
if the total distance of the moves is less than the maximum speed of the unit. It is not
possible to move inside another object or building, however if somehow trapped inside one

it is possible to move away (or out in the case of buildings).

Units can engage in combat with other units and with buildings. Soldiers and tanks can
attack from a distance, while workers need to stand close to the attacked object. It suffices
for any part of the attacked object to be in range. Specifically, weapon range is compared
against the minimum physical distance between any part of the objects. After attacking, the
weapons are subjected to a cooldown period before they can attack again. The cooldown

time is specified in simulation frames. By dividing the rate of frames per second by the

50

Modelling a RTS Planning Domain with Cost Conversion and Rewards

Vidal Alcazar Saiz

cooldown, the number of attacks per second is obtained. This way, the average Damage
Per Second (DPS) can be easily calculated, which is interesting for players as it is a more

realistic way of representing the damage output of a unit.

Objects have hitpoints (HPs) indicating how much damage they can take before being
destroyed. Lost HPs cannot be regained. Units and buildings can also have armor which
decreases the damage dealt by a weapon by subtracting a constant from each attack.
Damage values are uniformly distributed over certain intervals. Units only die after a
simulation frame has been completed when their HPs have dropped below 1, ensuring that
the order of executing attack actions is irrelevant.

The statistics of the units (also known as stats) are defined are always the same for all the
matches. These statistics are the different values the aforementioned characteristics of the
units and buildings have. Stats are the key element when comparing units and often
strategies are created upon these values. The next table shows the stats of all the units and
buildings in game 3.

OBJECT Worker | Marine Tank Sheep | Control | Barracks | Factory
COST 50 50 200 - 600 400 400
HP 60 40 150 0 1700 1150 1400
SPEED (TP/s) 4 3 3 2 - - -
SIZE r=3 r=4 r=7 r=4 62*%62 | 62%46 | 62*46
BUILD TIME 7s 8s 16s - 38s 25s 25s
VISION 7 - 4 4 4
ARMOR 1 0 2 2 2
RANGE 64 112 - - - -
DAMAGE 4-6 5-7 26-34 - - - -
COOLDOWN 8 8 20 - - - -
DPS 4-6 5-7 10.4-13.6 - - - -

Table 2: Statistics of the objects in game 3

51

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

In this table we can appreciate the differences between units and how this leads them to
fulfill different roles. Workers, while being builders and gatherers, are not without
defensive capabilities: their damage is only a bit below the one of the soldier, they are
faster and far more resilient while costing the same. The difference that makes a soldier a
better option is its range: the worker has to stand practically by its target to attack it but the
soldier can shoot it from afar. A worker could close the gap between both ranges and
maybe kill the soldier thanks to its higher HPs, but in game 3 (and all the other games in
the competition) units can attack while moving even backwards, so if intelligently
micromanaged a soldier will always win against a worker in a 1 versus 1 situation with no
obstacles. The same is true for tanks and soldiers: tanks are four times more expensive than
soldiers apart from the minerals invested in the factory but deal far less damage than four
soldiers altogether. Nevertheless, they have the same speed and the tanks twice the range,
so in an ideal situation tanks would always outperform enemy soldiers, no matter how
many soldiers are used. Of course, ideal situations rarely happen, partly because it is
designed to be so. Terrain, allied units, sheep, buildings, minerals,... all contribute to create
a more realistic and complex battle situation, so choosing tanks over any other unit is not
such as straightforward as it may seem, which is one the most attractive features of RTS

games.

For simplicity, there is only one resource called minerals. Minerals are spread out on the
map in clusters of “patches”. Mineral patches are circular objects. A worker unit can gather
minerals when close to a mineral patch. A maximum of four workers can simultaneously
harvest one mineral patch. Minerals must be delivered to any control center before they
can be used. A worker may drop off its minerals immediately once it is within range. Each
mineral patch contains a finite number of minerals, which are decreased when the object is
mined. Mineral objects vanish once they are completely mined. Workers may mine at a
rate of 1 mineral every 4 simulation frames. A worker can carry a maximum of 10 minerals

at any time.

In game 3, the maps are randomly generated every match, though they always have similar
characteristics. The initial state is always the same: both players start with 6 workers, a

control center, and 600 minerals each, and a nearby mineral patch cluster on randomized

52

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

terrain. Start locations are not symmetric and again, invincible sheep are roaming the map
randomly. The next screenshot taken from a game simulation depicts the initial state for a

player.

.."'I) B % oo

Figure 11: Initial state in game 3

The winning condition is to destroy all enemy buildings independently of the number of
other units the opponent may posses, which can lead to interesting suicidal tactics in which
a player (or both) focuses on destroying the enemy buildings instead of countering the
opposing army and disregarding self defense. However, the game has a limit of 20 minutes
of play or 9600 frames (20 * 60 * 8 FPS). In case the time limit was reached, the winner is
decided by a score based on the mineral gathered, the units and buildings built and the
enemy units and buildings destroyed. The equation of the score is the following: (current
mineral count / 2) + construction cost of all standing buildings and units + construction

cost of all opponent buildings and units that have been destroyed.

53

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

All the data mentioned in this section is included in the .bp files located under
trunk/tournament-2008, being the most important ones game3.bp and all the blueprint files
located under trunk/tournament-2008/terrans, included in Annex A. They include not only
the stats of the units but also all the possible actions of each object with the parameters and
the scripted effects. Some of the most important descriptions will be included in the Annex
A at the end of this document.

4.2 Client structure

ORTS works as a server-client system. The server is in charge of the simulation and
synchronization of the in-game events. On the other hand, the client only receives its
visible part of the state of the game (also known as a view) each frame and sends backs
actions independently of their validity. As it was mentioned in the section 2.2.1, clients
connect to the server using sockets, so as long as they comply to the defined protocol they
can be implemented in any way. This gives to the developers a great degree of flexibility
when designing their client, as it is not restricted in any way.

In our case, the client is coded in C++ and is basically composed of two independent
processes that are constantly running: the main loop and the planning process. The main
loop contains all the logic of the client and is based on the clients given by the ORTS
developers as examples, while the planning process just executes the planner every time it
is called.

As this game is a fast paced one, the game state changes quickly. Therefore, planning for
very long ranges, apart from being very costly (often to the limit of rendering the problem
unfeasible due to the dimension of the state-space) is not particularly useful because the
situation may have changed drastically and the plan would no longer be valid. The solution
to this situation is to replan as often as possible as long as the plans are of sufficient
quality. Basically every time a plan is calculated, the client tries to follow that plan until a
new one is generated, in which case the old plan will be discarded and the client will stick
to the newly generated plan until the following arrives. Time is here a critical factor, so the
design of the domain and the problems has been done around this conception.

54

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

The external libraries available for developers have been called modules. Most ORTS
applications are built around the concept of modules. Modules provide various services to
the application, most of them receive and handle events, and some of them fire events.
Unless you are managing the ORTS network protocol yourself, you will need, at the very
least, a GameStateModule. This important module keeps track of the various objects in the
game state, sends events when a new server view has arrived, and provides access to delta
information, that is, which units are new and which have vanished/died. Another useful
service is the GfxModule, which creates a graphical interface for the user to view the game
state. It can even be customized by passing an implementation of a specific interface to

handle player events in various ways, allowing the user to play a game.

The main loop is the manager of the process. It is in charge of the connection issues, the
interface, libraries, etc... The class that contains the main method is game3_main.C at
trunk/apps/game3/src. This class has almost no real functionality and has been copied
almost line by line from other examples. Basically it gathers the possible arguments it may
receive by console, includes the different libraries and handlers needed for managing the
messages and initializes the graphic interface. The connection is managed with
GameStateModule and requires no additional work.

ORTS clients are usually conceived as a set of handlers in charge of managing events
represented by a particular kind of message. This is compulsory for view messages and
other control messages the server can send to the client, but it is also a way of
implementing behaviors for units as the handler takes care of all the messages of a kind
related to the unit and no control structures have to be implemented in the main loop. The
modules for pathfinding are a typical example of this kind of functioning, being the call to

the module the following one:

call_handlers(TerrainModule::PathEvent(EventFactory::new_who(),
TerrainModule::FIND_PATH_MSG, TerrainBase::Obj2LocTask(gob, target)));

In this sentence, a new event along with a message (FIND_PATH_MSG) is created,
passing as the third argument an object that encapsulates the identifier of the object and the

location where the unit has to go.

55

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

This system of event handling determines the structure of the client. Since every frame a
view is received by calling the method recv_view() in GameStateModule, the handler of
the message of type GameStateModule::VIEW_MSG is the handler that fires every frame
and upon which all the functionality of the client is based. Other than that as long as the
libraries are loaded messages are sent and functionality is distributed, so class diagrams are
not worth mentioning in clients. This makes the way of implementing client a rather
unintuitive task, but offers the advantage of using events with no control structures with

external libraries and forgetting about its inner working.

In the client implemented for this work, the class in charge of handling view messages is
PlannerEventHandler.C For every view received the client checks whether there is a new
plan or not. When a new plan is received replanning must be scheduled so immediately a
new problem is created by calling GameStateModule::get_game() and
GameStateModule::get_changes() and extracting all the relevant data about the problem. In
a real implementation of the client this should be done calling a new process that executes
in parallel so replanning is done while the main process goes on playing executing the
plans via modules. However since the scope of this work is just studying the design and
quality of the domain and the plans generated, no parallel execution will be done and the
plans will be generated just for evaluation.

4.3 Domain definition

The purpose of planning in this work is not to obtain plans that could be as good as those
calculated by a human player. As the problem to be solved is far more complex than the
average planning problem, in this case planning will focus on obtaining coherent plans in a
reasonable time. Coherent means that the plans should represent one of the most typical
strategies, trying to use as many units as possible and coordinating them to achieve a
certain goal. In this section we will describe how the domain will be designed justifying
the modeling decisions prior to analyzing the results obtained.

56

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

4.3.1 Behaviors as unit consuming operators

When designing a domain for a game, the easiest way of doing it is correlating the
possible actions of the units to operators in the domain. This way the plan will reflect
every single action for every single unit. However, this is hardly a correct approach in
RTS games, as the number of evaluated nodes grows exponentially with the number of
possible actions, and the high number of units and the complexity of the world only
worsens the situation; if designed in this simplistic way, the planner is likely to not be
able solve the problem or at least to do it in a limited amount of time and using a limited
amount of memory.

RTS games are characterized by being divided in two levels in terms of controlling
units: strategical and tactical actions, respectively correlated to macromanagement and
micromanagement. This differentiation of levels allows for an easy hierarchical
implementation of computer players. As integrating the low level actions available in
the game into the planning process is most of the time unfeasible, a possible solution is
making the planner taking care of only one of these aspects. Given that
micromanagement usually requires very fast reactions and that it is somehow easier to
control using a set of rules (as in a reactive autonomous agent), macromanagement is
probably the most suitable aspect of the game using planning. Not only it adapts better
to the conception of planning as a sequence of actions that achieve a goal, but also such
a design is often a natural result of abstraction over the multiple factors of the domain
rather than a conscious decision.

In this work, the proposed solution is not individually controlling every unit executing
plans. Instead, we will assume a certain degree of autonomy for the units and assign
them a task related to some goal. Depending on the task, a specific set of actions must
be followed by the unit, set of actions that will be implemented as part of the
micromanagement component of the client, so in order to differentiate both levels of
actions more drastically we will use the term behavior to refer to the actions a unit will
do in order to achieve a specific goal. This way the planner will assign behaviors to
units, which will act autonomously without further intervention by the higher levels of
decision of the client.

57

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

These so-called behaviors are general concepts associated with particular units, so only
some behaviors will be adequate for some units depending on their role. The operator
that assigns a behavior will have that into account, so typing (a feature supported by
PDDL 2.1) will be necessary. Besides, in most of the cases these behaviors are
associated with some specific object in the game, meaning that they will not be just the
definition of what the agent will do but also with which object or area in the game. An
example will be attacking: a soldier cannot just be ordered to attack, it needs a target, so
the operator will involve the soldier, the behavior and the target.

Another particularity of this design decision is that assigning a behavior uses up that
unit, this is, that unit cannot be used in another operator once it has been given a
behavior. This is justifiable for two reasons: on one hand, behaviors are not
instantaneous actions, they go over some time during which a new plan will probably be
calculated, so assigning one behavior per planning is good enough if replanning is done
in a reasonable time as the situation probably will not change that much for the behavior
to become obsolete (such as a soldier attacking an already destroyed base or a worker
gathering mineral from a depleted cluster); on the other hand, this easies the generation
of plans as reduces the state-space by limiting the number of units that can be taken as a
parameter for an operator and frees the fact that represents the unit in case it is needed
for another reason, reducing the number of facts the planner has to deal with.

The following subsections are the descriptions of the operators that relate to this
approach along with possible ways of implementing the behaviors at low level (the
effects of the actions will not be included as they will be described later together with

the design decisions that affect them).

4.3.1.1 Attack

Attacking is feasible only for soldiers, and has an enemy base associated as a
parameter. It uses the positions of both the soldier and the enemy base to determine
the cost of the action, as it will take time for the soldier to get to the enemy base. A
simple implementation of this behavior would be making the unit advance towards the
enemy base shooting enemies as it encounters them, prioritizing military units over

workers and workers over buildings. The PDDL syntax is the following:

58

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

(:action ATTACK
:parameters (?soldier - soldier ?enemybase - enemybase ?src - position ?dest - position)
:precondition (and
(at ?enemybase ?dest)
(at ?soldier ?src))

:effects (..)

4.3.1.2 Defend

Defending is an analogous action to attacking: only soldiers can do it, and has an
allied base associated as a parameter. The PDDL syntax is the following:

(:action DEFEND
‘parameters (?soldier - soldier ?cc - cc ?src - position ?dest - position)
:precondition (and
(at ?cc ?dest)
(at ?soldier ?src))

:effects (..)

4.3.1.3 Harass

Harassing is similar to attacking, but its objective is deviating the attention of the
enemy and not making a direct attack. Other than that it is similar to attack with the
exception that in this case the soldier flees from opposing military units instead of
engaging them in combat. The PDDL syntax is the following:

(:action HARASS
:parameters (?soldier - soldier ?enemybase - enemybase ?src - position ?dest - position)

:precondition (and

59

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

(at ?enemybase ?dest)
(at ?soldier ?src))

-effects (..)

4.3.1.4 Scout

Scout is done by workers as soldiers are slower and more likely to harass. Its target is
an area marked as unexplored in the definition of the problem, and a way of
implementing this behavior can be making the worker wander around the target

location in a spiral while avoiding enemies. The PDDL syntax is the following:

(:action SCOUT
;parameters (?worker - worker ?src - position ?dest - position)
:precondition (and
(unexplored ?dest)

(at ?worker ?src)

:effects (..)

4.3.1.5 Mine

Mine is obviously only done by workers. It needs a control center near a mineral
cluster as a parameter and not an individual mineral as both control centers and
clusters are needed to mine, providing an additional level of abstraction to the PDDL
definition. To implement this behavior is not a trivial task (actually game 1 is about
optimizing this) so the best solution is probably using the existent low AI modules

instead of implementing it manually. The PDDL syntax is the following:

(:action MINE
parameters (?worker - worker ?cc - cc ?src - position ?dest - position)
:precondition (and

(at ?worker ?src)

60

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

(at ?cc ?dest)

(> (max-workers-to-mine ?cc) 0)

-effects (..)

4.3.2 Intermediate operators

All the operators are actions related to units or buildings as in game 3 it is the only way
an action can be performed. In the previous section all the actions that meant long
processes in which the unit is used up until replanning was done. Nevertheless, not all
the actions in game 3 can be limitless over time, some of them can be performed in a
known amount of time and so the unit or building performing them can be assigned to
do something else after that action, which in terms of the domain definition means that
the unit or building is not used up but rather its relative work load for the plan is
increased depending of the action. The work load of a unit is directly related with cost

and so will be described in Section 4.3.4.

One of the possible intermediate operators, build command center, has been left out of
the design because of the complexity of determining a favorable position and the
importance of always having at least one control center. Therefore, its construction will
be scheduled by the client when certain conditions are met (most likely losing the last
control center or having too many workers using it to deploy resources) giving it a
higher priority over the planner's sequence of actions. These are the implemented
intermediate operators.

4.3.2.1 Build worker

This operator represents the action of building a worker at a control center. It must be
used once per worker built because PDDL uses individual facts for object

representation instead of a numerical value of available objects. When created, a

61

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

worker comes at the same position of the control center, and one of its requisites is
having at least 50 minerals, the cost of a worker. Both the control center and the
worker can be used in subsequent actions of the same plan, justifying this operator
being classified as intermediate. Why a predicate (ready ?worker) is listed as a
prerequisite will be explained in the Section 4.3.6. The PDDL syntax is the following:

(:action BUILDWORKER
parameters (?cc - cc ?position - position ?worker - worker)
:precondition (and
(ready ?worker)
(> (minerals) 50)
(at ?cc ?position))

-effects (..)

4.3.2.2 Build soldier

Completely analogous to the previous operator, building a soldier is done at a
barracks. The cost is again 50 minerals, but this is a coincidence because the cost of a
worker and the cost of a soldier is incidentally the same according to the game

description. The PDDL syntax is the following:

(-action BUILDSOLDIER
parameters (?barracks - barracks ?position - position ?soldier - soldier)
:precondition (and
(at ?barracks ?position)
(> (minerals) 50)
(ready ?soldier))

:effects (..)

62

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

4.3.2.3 Build barracks

Similar to the previous operators, but this time performed by a worker. The barracks is
built where the worker is, although the exact in-game position must be chosen by the
client, because the presence of obstacles, units and nearly every object in the game
will not allow its construction. The PDDL syntax is the following:

(:action BUILDBARRACKS
:parameters (?barracks - barracks ?position - position ?worker - worker)
:precondition (and
(> (minerals) 400)
(at ?worker ?position))

:effects (..)

4.3.3 Goal definition

In automated planning one of the most common ways of defining the goal of a plan is
using a set of facts that must exist for the goal to be achieved, not unlike setting a
satisfiability condition. With the advent of numeric values in planning, another way of
describing the goal condition is using one of more fluents (along with facts if needed)
and comparing them with a value. This is a typical case in problems whose goal is
getting a certain amount of something, as for example an amount of minerals in game 1

for a domain centered in resource gathering.

However, this approach is not valid in our context. A great part of the complexity of
RTS games is knowing which actions should be done at every moment to get closer to
the winning condition. A classical approach like making the goal match the winning
condition is out of the question since it would be equivalent to solve the complete RST
game, which is a problem far too complex for any computational system. Rather, each
problem generated by the client must have simple goals so a plan for achieving them

can be computed in real game time. These simple goals generally correspond to general

63

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

actions at a strategic level, such as “attack enemy base A” or “get 500 minerals”, but the
main issue here is that more often than not these goals are opposite goals as achieving
one means that the other can be achieved. For example, if resources are limited within
the problem “attack enemy base A” means using and losing soldiers which are
necessary to achieve “defend allied base B”, so the domain definition must deal with not
being able to achieve all the possible goals that would lead to a more advantageous
situation to the player. This makes these simple goals be qualified as soft goals, in the
sense that they are not compulsory to solve the problem, but are a measure of the quality
of the plan.

Because goals in RTS games work like this, defining a condition-based goal that
involves achieving as many soft goals as possible is a very difficult task if facts or
straightforward numeric values are used, more so as RTS games are a very dynamical
environment in which the goals can change in a matter of seconds. To solve this, a
different approach has been used: rewarded soft goals. This involves two things: first,
the goal condition in the problem definition is getting at least a certain number of
rewards by attaining soft goals, and second, rewards are obtained not by solving a
certain part of the problem but rather by using units in actions that lead to achieving a
certain soft goal.

The first of these factors, getting at least a certain number of rewards, is not a hard
condition. The rewards can be set to 0 and since the planner is supposed to give plans of
some quality, even though the goal condition is satisfied from the very beginning
without having to compute anything the planner is likely to come up with a plan that
will give some rewards despite that not being its goal. Consequently, this minimum
reward is not the goal of the domain, the goal of the domain is maximizing the rewards,
so its value is an indicative of the minimum quality of the plan, forcing the planner to
give a sequence of actions sufficiently good to be used by the client in a real situation
and avoiding lackluster plans which could be of no use. Of course, attention must be
paid so this value is not too high making the planner take too much time to give a
solution or even making the problem unsolvable, so the election of this parameter is
usually a trade-off between quality and performance. As the soft goals that can be
satisfied to obtain rewards vary throughout the match, this value must be calculated
every time a problem is generated, which is an added difficulty parameterizing the

client.

64

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

The second of the issues that are related to this solution is using units in actions that lead
to achieving a certain soft goal. As described in section 4.3.1 some operators use up a
unit as it was another resource giving it a behavior; apart from the reasons already
mentioned, this approach also allows rewarding these behaviors accordingly to their
utility leading to a natural approach of assigning behaviors. For instance, a soldier that
attacks an undefended base will get more rewards than another attacking a heavily
defended base (which would result in him being outnumbered by the defending forces),
or a scouting worker when there is none doing it yet than when there are already many
workers scouting the map, as the benefits will be lesser. Another reason for using this
design is the fact that soft goals are often mutually exclusive because the resources
(units in this case) are limited and thus using up units to achieve a given goal reflects the
impossibility of using it to achieve a different one in the real problem, apart from
simplifying the subsequent computation. The exception to this kind of actions is the
MINE operator because mining itself does not represent a benefit and it is used instead
as the previous step of producing a unit, which will perform a task that will obtain a
reward, solving the problem of determining its reward and making emphasis on its
means-ends idea.

As aforementioned, determining the reward for each operator is not a trivial task.
Depending on how many rewards a unit can get, it will do one thing or another, so an
imbalance in rewarding would generate plans oriented to one specific behavior instead
of using flexible plans, apart from being relatively easy to replicate with a scripted
behavior, actually what we want to avoid in the first place. Again basing us on the
expertise in RTS games is the most natural and probably best overall approach. The
rewards must be set depending on the nature of the action and here we can distinguish
two kind of actions: combat oriented (attacking and defending) and not combat oriented
(scouting and harassing).

In the combat oriented actions the best rule is usually assigning a few more soldiers to
attack or defend than the enemy force because fewer can mean defeat and more would
be what is commonly called by RTS gamers as overkill, this is, using too many units for
something that could be done with less units and therefore not using them in more
useful tasks. As actions are related to a single unit, the reward must be calculated per

unit with the additional problem that the planner does not know a priori how many units

65

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

will be attacking or defending the same point (as those would be actions performed
afterwards because of the sequential conception of plans in most efficient techniques in

automated planning). Therefore, our solution consists of a typical Gaussian function of

(x=b)°

the form 2¢2 1n which a is the maximum reward a unit can get, b is the
ac

position of the maximum reward (which should correspond to the number of enemy
soldiers in the opposing force plus a little value) and ¢ the width of the Gaussian bell,
which should have a value so f{0) ~ 0. Figure 12 is a graphic with the rewards when
attacking a base defended by 3 soldiers with the maximum reward being 10 obtained
when attacking with 2 more soldiers and using 1.1 as c:

12

10 —

0 1 2 3 4 5 6 7 8 9 10

Figure 12: Rewards per soldier

As we can see, the first soldier will contribute with almost no rewards, but the sixth will
grant a hefty amount of rewards. Therefore assigning a soldier to attack when too few or
too many have been already assigned grants so few rewards that the planner will avoid
doing so. Another advantage is that this is a conservative approach to attacking and
defending, as it is unlikely that the planner decides to attack or to defend with just a few
soldiers if it decides to attack, encouraging an all or nothing behavior that leads to
successful attacks. Figure 13 shows how overall rewards are obtained using a
cumulative Gaussian function:

66

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

45

40 —
35 '

30

25

20

15

10

Figure 13: Accumulated rewards

The value of a is a parametrized value affected by the existent number of targets. This
means that the rewards are divided between the number of enemy bases for the attack
operator and the number of allied bases when defending. This is again a decision based
on the characteristics of the game: if there are fewer enemy bases than allied ones, it
prioritizes attacking as it gets it closer to the winning condition and vice versa when
attacking. For instance, if the enemy has two bases and the player three destroying one
and losing another is favorable as it leaves the opponent with a single base left, while if
the player has only one base left and the enemy more than one, defending will be more
rewarding than attacking as it would mean losing the game. This also helps in
determining the overall aggressiveness of the plans, as both reward values for attacking
and defending are independent and can be changed even throughout the game to
encourage one way of playing or another.

A problem that arises when implementing this reward function is that it must be either
embedded in the PDDL specification or precalculated before every call to the planner
and added in the problem as facts with their associated fluent. Both of them mean a
significant overload for the planner because of the calculations it has to do when
evaluating a state and the added number of facts and fluents it has to deal with, so a
simpler approach when computational resources are scarce is needed. To solve this

problem, the best solution is to transform the Gaussian function to a lineal one in which

67

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

there are no exponential calculations. The simplest approach to this is using two
functions that go from O rewards at O soldiers assigned to a rewards at x = enemy-
soldiers+3 and from a rewards at enemy-soldiers+3 to O rewards at x = 2*(enemy-
soldiers+3). It is a straightforward approach that loses some of the advantages of the
Gaussian function but it is very easily calculated and does not have a negative impact on

computation time. This is how it is formulated:

ax

= —soldiers+3
Flx)= enemySoldiers+3 X <enemy —soldiers

ax

a— x>enemy—soldiers +3
enemySoldiers+3 Y

Figure 14: Final rewards function

4.3.4 Costs

In this work, the main concern is the quality of the plan. As it has been analyzed in
previous sections, the amount of rewards obtained is one of the ways of judging whether
a plan is good enough or not. However, the amount of rewards obtained alone is an
indicator of how appropriate the behaviors assigned are and not the overall plan. While
attacking a base using a certain number of soldiers may grant a good amount of rewards,
choosing which soldiers has not been taken into consideration yet. If only rewards were
used, the planner would choose units randomly probably sending them to objectives far
away from their position instead of choosing units closer to the target, for example.

Regarding costs, it is mandatory to specify what is considered cost in the domain
definition and what is not. When thinking about costs in RTS games, the first thing that
comes to mind is the unit's cost, this is, the amount of mineral that is necessary to
produce or build the unit. However in this section cost is analyzed from the planner's
point of view. Therefore, cost in this context will be understood as a factor that
decreases the utility of an action: time spent and concurrency. Actions that produce or
that use up resources like mine or build barracks respectively have no effect on the way
cost is treated other than when evaluating their utility.

68

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

The main issue in cost is time and concurrency then. These problems have always been
one of the critical points in automated planning and thus have been faced many times
using different approaches. One of the most clear examples of this is PDDL 2.1 itself: it
is the first planning definition language that tries to standardize time management in an
automated planning setting. However classical approaches in our context are not as
useful as they may seem due to the way planners try to optimize plans, so using the time
features of PDDL 2.1 has been discarded and a different approach has been attenpted.

Theoretically, state of the art planners are able to use a metric as a guideline for the
plan's quality instead of the traditional plan length measurement. Using the declaration
that PDDL provides, a metric can be imposed to a planner indicating it that the objective
is not only to reach the goal but also either to minimize or maximize a given value.
Thanks to the flexibility of PDDL this value can be anything from a single fluent (the
most obvious case being time) to the value of any mathematical function that may be
expressed in PDDL, so a priori an expression could have been written to be used as an
adequate metric for this domain. However this is not true; optimizing in planning is a

very hard task and the ways planners are able to use the metrics are very reduced.

A common limitation lies in how many planners use the metrics: they do not try to
minimize or maximize a value, instead they look at the operators that modify that value
and try to come with a minimum length plan having into account only those operators,
often using tweaks to work with operators that decrement the value or when
maximizing. In order for this to work, the amount by which those operators modify the
value must be before the planning so the metric can be established proportionally.
Because of that, most current planners cannot work with state-dependent cost
assigments and all the operators must modify the value to minimize homogeneously
throughout the plan.

RTS games are very complex and the game state during a game is changing constantly.
Due to this dynamic behavior fixed-cost operators are ill suited for their use in RTS
games and thus a classical approach would not work as a way to force the planner to
give high quality plans. Having into account that in this domain quality depends on
several factors, the use of the time features provided by PDDL 2.1 is discarded. More

69

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

so, rewards, which have been stated as another way of measuring the quality of the plan,
are generated dynamically and would not satisfy the condition that most planners
impose to operators when minimizing a value. In this particular case the planner that
will be used for the experimentation, Metric-FF, works as specified previously, so an
alternative is needed.

As stated before, implementing metric optimization in a planner is a very complex
problem that is yet to be solved, so hand-coding a specific planner for this domain is out
of the question. With all these limitations, the proposed way of overcoming this problem
is using cost-to-operator conversion. The main point in cost to operator conversion is
standardizing the assignment of values to the fluent that will serve as a metric so
conventional planners can effectively use it to improve the plans. Using this approach
does not require big modifications to the domain: the value to minimize is stored in a
temporal fluent until the theoretical goal is reached. Once the goal is reached, instead of
finishing the execution an operator is used several times to subtract a constant value to
the temporal fluent that holds the cost and add that same value to another fluent that will
be the actual fluent the planner will try to minimize. This means two things: the metric
is modified homogeneously, so planners will not have any problem working with it, and
an auxiliary goal, achieved when the auxiliary cost fluent takes a value below O once the
real goal is reached and usually represented by an unrelated fact, is necessary to stop
generating the plan. In our domain this has been implemented like this:

(:action TO-END
:precondition (and
(> (rewards) (rewards-threshold))
(> (pre-total-cost) 0))
effect (and
(decrease (pre-total-cost) (cost-increment))

(increase (total-cost) (cost-increment)))

(:action END
:precondition (and

(> (rewards) (rewards-threshold))

70

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

(<= (pre-total-cost) 0))

:effect (goal_achieved)

In this domain, the goal is getting a minimum amount of rewards, represented by the
prerequisite “(> (rewards) (rewards-threshold))”. Once the goal has been reached, the
operator TO-END can be called repeatedly to decrease the fluent that temporally holds
the value to minimize and increase the fluent used in the metric. The values are
modified by a constant (in this case represented by a fluent that does not change) called
cost-increment until pre-total-cost, the temporal fluent, has a value below 0 and the
operator END is finally called, adding the fact goal-achieved to the fact database and
terminating execution.

Plans generated like this are the same sequence of actions a normal domain would
generate but with the distinguishing fact that at the end of the plan there is a series of
calls to the operator TO-END, which determines the effective plan length to minimize.

An example of a plan would be the following one:

step 0: ATTACK SOLDIER4 ENEMYBASEO POS3-3 POS1-1
1: ATTACK SOLDIER1 ENEMYBASEO POS5-1 POS1-1
2: ATTACK SOLDIER2 ENEMYBASEO POS2-5 POS1-1
3: ATTACK SOLDIER3 ENEMYBASEO POS4-2 POS1-1
4: HARASS SOLDIERO ENEMYBASEO POS5-1 POS1-1
5: SCOUT WORKERO POS5-1 POS6-2
6: TO-END

7: TO-END

8: TO-END

9: TO-END

10: END

As it can be seen, there have been four calls to the TO-END operator, meaning that the
cost is between three and four times the constant cost-increment. Other than that, after

71

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

discarding these last operators the resulting plan would be a completely conventional

one with no further modifications to the domain.

To factor in time and all the concurrency issues the domain has, a cost must be
integrated with the rewards system. In this domain, units and buildings can perform
different actions, but these actions cannot be performed at the same time. Besides, the
order of the actions performed by the same unit or building is a relevant factor so special
attention must be made to this. In our design, basically the concept around time is that
the latter an action is performed, the least its utility is, which means that the most time
has passed, the fewer the rewards are. This has been implemented in two ways: cost due

to delays and cost associated to units and buildings.

The cost due to delays in actions is just the loss of utility that occurs when that action
cannot be performed immediately. This happens only with actions that require a unit to
move to perform it, as the time spent when producing units is factored associating it to
the units produced. An example of this would be attacking an enemy base with a nearby
soldier instead of with a distant one, which is usually more adequate and thus has a
lower cost. As this cost is related with the time the units spend moving toward their
target it is based on the position of both the unit and the target and the characteristics of
the terrain. The positions in this domain are represented by a fact with two associated
fluents which represent their x and y coordinates. Besides, an additional fluent is used to
indicate how difficult is for a unit to move across the area designated by the position
based on the static obstacles present in the area and the units (both enemy and allied)
that move around it. All in all, the cost of moving is on one hand the Manhattan
distance, represented by |x0— xI|+|y0—yI| and on the other the difference between
the roughness factor of the areas if the value of the target position is higher. This way of
calculating the cost of moving is simplistic and probably not accurate for real life
problems, but due to the limitations of planners with mathematical operations and the
level of abstraction used in the domain it can be a valuable indicator of the cost of

moving from the origin to the destination.

The other way of taking into account costs is associating an individual cost to every unit
and building that has been involved in an intermediate action. That cost will be added to

any other cost a subsequent action may have, so units participating in several actions

72

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

will have a higher cost associated. This is most useful for the unit and building
producing operators: for instance, if a barracks is used to produce a soldier, a fixed cost
will be added to the cost associated to the barracks and the cost associated to the new
soldier. This way if that soldier is used to attack an enemy base, its final cost will be
higher than the cost of a soldier that already existed when the problem was generated.
Besides if that barracks produces another soldier, this second soldier will have the
production cost plus the cost the barracks already had associated, meaning that it is
counter productive to produce many soldiers at the same barracks. This is reflected in
the game in three ways: first, units and buildings do not queue too many actions that
could result in a more complex and costly plan, actions that besides could not have been
done before replanning, wasting resources and complicating the problem unnecessarily;
second, the intermediate actions are distributed so a single unit or building does not
perform too many things if other units or buildings can do it, achieving some degree of
collaboration at unit level; and third, it deals with the time issues of newly produced

units by assigning them an initial cost that otherwise would be zero.

The way costs and rewards are integrated is not a trivial one. Costs are not subtracted
from rewards but instead they are added to the temporal cost fluent pre-total-cost while
rewards are subtracted to it. This has been done this way because of the way the
heuristic function works in most planners. In most of the cases when a planner evaluates
a state the heuristic function estimates how good it is depending on the distance that
there is to the goal. In this case, being closer to the goal means doing less calls to the
TO-END operator, so the lesser the value of pre-total-cost theoretically the better the
state. The approach used is to minimize the value instead of maximizing it for two
reasons: first, the most natural approach for most planners is minimizing rather than
maximizing; second, minimizing means that the best plans will be the shortest ones if
rewards and costs are correctly factored in as they will need less calls to the TO-END
operator to finish, while maximizing would mean to look for a plan with as many calls
as possible, resulting in a bigger state-space to be explored. Minimizing though has an
essential disadvantage: pre-total-cost needs a greater than O value initially so its value
can be reduced. This value must be big enough to allow a margin of improvement (if for
example its value is too small it may reach O when it could be minimized further and the
execution of the plan would end with no calls to TO-END even if there were better
plans) but should not be too big as that would mean additional calls to TO-END that
will result in a detriment of the performance. This value must be carefully balanced with

the rewards, the costs and the constant value used in TO-END to convert the cost to the

73

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

final fluent.

Another point worth of mentioning is the way pre-total-cost must be modified. When
heuristic planners evaluate the states before expanding them, they usually choose only
those that they perceive as favorable for the resolution of the problem. This means that
if an operator using costs increases pre-total-cost it has little possibilities to be used.
This fact has two consequences, being the first one that it does not allow to use an
approach in which rewards reduce the cost instead of the opposite as it has been
implemented. A domain in which costs are bigger than rewards and their difference is
minimized has the advantage of not having to deal with the initial value of pre-total-cost
while keeping the advantages of minimizing, but as cost increases and not decreases
with every action, it is unlikely that the planner would search too deep in the space-
state. The second consequence is that costs can never be applied in an operator if no
rewards are granted at the same time because the planner would seldom use that
operator. Therefore no cost is added to pre-total-cost out of the operators that use up
units and grant rewards, but rather the cost is carried on associated to the unit as
explained before and added only in the last action of the unit. Such a design makes more
emphasis in the differentiation between behavior and intermediate actions to the point
that intermediate actions are not likely to be used unless the unit participant in that
action gets assigned one of the possible behaviors afterwards. In practice, this means
that units and resources will not be produced by the sake of it even if just having them is
already more advantageous for the player than not doing so, but rather will have the role

of a way to get a reward using a new unit to accomplish a more general task.

To sum up everything, the final value that must be minimized at the end of the plan is
represented by an initial value minus the summation of the different rewards minus the
costs obtained for each action. If a plan contains n reward-granting actions, the equation
that express the value to minimize is the following:

n

totalCost =initialCost— Y, (reward,—cost,)
i=1

Figure 15: Metric to minimize

74

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

4.3.5 Abstraction

A common trait of modeling in computing independently of the context is abstraction.
In many problems there are too many factors to deal with, making inviable to compute
them, so a way of reducing the details of the problem without losing key information is
needed. In planning domains, in which the computational order of problems is usually
very high due to how the space-state is explored, abstraction is one of the main issues
that can determine whether a problem is solvable or not. In the domain definition for

game 3 several abstractions were used, some of them being the following:

e Only allied units and buildings will be treated individually. Enemy buildings will
be represented by a fact “enemybase” independently of the existent buildings.
Enemy military units will be associated as a fluent either to enemy bases (when
defending them) or to allied control centers (when attacking them). Workers will
not be factored in.

e Due to the characteristics of the game, tanks have been taken out. Based on their
stats, it is not clear whether tanks are better options to soldiers cost-wise, so to
simplify the problem they will not be used in planning. Of course opponents are
free to use them, so to take them into account they will be represented as 4

soldiers.

e The map is constituted by a 64 by 64 grid of tiles, each one being a grid of 16 by
16 points (adding up to a world of 1024 * 1024 effective positions). This is too
much information to be used in planning, so the map has been split in 64 areas to

have a more coarse representation of the world.

e Only the areas relevant to the game state are taken into account. If an area has no
objects and has been already explored it will not be included in the problem as
there will be no way of interacting with it using planning.

e As the construction of control centers must be scripted, in the domain it is
supposed that they are always close enough to mineral clusters and so minerals
can be left out of the representation by associating the mine operator to control

75

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

centers instead to minerals specifying with a fluent how many workers can mine
(as there is a 4 workers limit per mineral and usually not all the minerals in the
cluster are accessible).

4.3.6 Object reutilization

Since its publication in 2002, several critics have been done to PDDL 2.1 One of the
biggest controversies has been the limited capacity it has to represent sets of facts using
fluents instead of enumerating them. For example, in PDDL 2.1 it is impossible to
represent ‘3 soldiers”, instead the definition of the problem needs an enumeration of the
kind “soldierl soldier2 soldier3”. PDDL is highly based on STRIPS and classical
planners have been designed following these lines as well, so it is a logical approach,
but it greatly hinders its expressiveness. In RTS games units have several characteristics
that differentiates one from another, if only just the position on the world, so such an
approach is not a great problem as the units themselves are almost never equivalent.
This is true however for the objects already in the world, but not for those that can be
built or produced. If a soldier is going to be built, a fact of the type soldier that is not
alive is needed to produce it. If it is three soldiers, three different facts are needed.
Apparently this is not a great problem as replanning happens often and there is not time
to produce a high amount of units each plan, so introducing a reasonable number of
facts to be used for this purpose should not be a problem. Despite this, a difficulty lays
in that planners treat the facts independently even if using one or another would lead to
totally equivalent states (or plans, from a more general point of view). In most other
contexts, the computer would simply pick one of the soldiers and would not worry about
what could happen if it took another one, as they have the same characteristics.
However in automated planning the most common behavior of the planner is calculating
independent plans for all the facts that would fulfill the requirements of the operator
even if there is no practical difference between using one or another. This means that for
every fact in the database a new node is expanded and a subsequent plan may be
calculated, multiplicatively increasing the number of states by the number of equivalent
facts. Even worse, this happens not only at one point in the plan but rather every time
the operator can be evaluated, so in the end the computational increase is of exponential
order.

76

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

In game 3 soldiers, tanks, workers and their respective production buildings can be built,
so the impact of this issue is high. To prevent this from happening object reutilization is
used. As shown in the previous sections, operators that grant a reward and thus actively
contribute to achieve the goal use up a unit. As in ORTS every unit must have a
position, in the domain definition being alive means being at a particular position. When
using up a unit, the fact is not taken out of problem or labeled as dead, instead the
predicate that relates it to the position it was is deleted and thus the fact that represents
the unit can be used to represent a newly produced one, having into account that the
plans must be correctly interpreted as the output will show the same fact used several
times when it really represents different units throughout the plan. As costs are assigned

to units upon being produced, there is no problem with costs either.

This implementation does not solve the problem by itself: if several units are used up,
the same situation occurs but this time with facts that represented old units. To
overcome this, a predicate “ready” is used as a requirement in the unit production
operators along with a logic that prevents having more that one unit of a kind ready at
the same time: the “ready” predicate is assigned to a fact when a unit is used up only if
there was no other unit at that time with that predicate already. This can be done in
PDDL 2.1 using types and existential quantifiers, as done in the attack operator:

(not (at ?soldier ?src))

(when (not(exists (?x - soldier)(ready ?x))) (ready ?soldier))

This ensures that there is only one fact that can be used to represent a new unit, solving
the aforementioned problem. As at least a behavior operator is needed to reach the goal,
there will always be a ready unit of each type to be used, with the only case in which
this predicate must appear in the problem definition being when there are no units of
that kind alive at the moment.

4.3.7 Problem definition

In PDDL the problem definition is completely dependent on the domain definition, but

77

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

there are some issues that depend on how the problem is formulated. As the parsing is
done differently by every planner, how restricted is the problem definition depends on
the planner as long as the problem is well formed; for example, some parsers allow
using not initialized fluents while others do not. Basically the problem definition is the
initial state and the goal condition, but PDDL 2.1 also includes the possibility of adding
a metric. Since the problems are automatically generated by the client in real time, they

conform to the same structure:

e The objects are the enemy bases, the allied units and buildings and the relevant
positions. If there is not at least a unit of a given kind, an object will be created
(and latter assigned the predicate “ready”) so units of that type can be built and
used. The relevant positions are those that will later have the predicates “at” or

“unexplored” assigned, being all the other positions ignored.

e The fluents assigned to positions are “posX” and “posY”, which hold their
Cartesian coordinates that are used for the calculation of the Manhattan distance,
and “positionCost”, which is a measure of how costly is to go through the area.
None of them change during the generation of the plans.

e All the general fluents are initialized. These include the rewards (attack-reward,
defend-reward, scout-reward and harass-reward), the resources (minerals and
minerals-gathered), the value of pre-total-cost, the cost increment for the
operator TO-END and the reward threshold to reach the goal.

e The unexplored areas are listed using the predicate “unexplored”.
e The position of all the objects is listed using the predicate “at”.

e The fluents that represent the enemy forces are initialized.

e All the accumulated costs and assigned soldiers are initialized to O.
e The goal (goal_achieved) is set.

e The metric to minimize (total-cost) is set.

78

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

5. USER'S MANUAL

This section describes the steps that must be followed to test the planning domain and to
install ORTS and use the problem generating client. A Linux compatible operating system
must be used, though Metric-FF works in any Unix system and ORTS can be successfully
compiled to be used in Windows and Mac/OS.

5.1 Using the planning domain

Since the domain has been defined using PDDL, any planner supporting the features of
PDDL 2.1 (the time features are not needed) can be used to test it. As the planner used for
the experimentation has been Metric-FF, the steps to execute the domain with the problems

used in testing will be the ones needed for it.

Metric-FF can be obtained from its site web [Metric-FF]. It can be used in any Unix
system, and needs a Lex and Yacc compatible library. To compile it, a C compiler such as
gcc and the makefile application are necessary. To generate an executable binary, just type
“make” and a file named “ff”” will be created in the same directory from where “make” was
issued. The binary file is complete standalone and does not requires any of the files that are
included in the source code package. Metric-FF has a simple set of options that allow
parameterization of the input and output files, the search algorithm, the weight of the
heuristics and the metric option. If Metric-FF is executed without options or with invalid

options, the usage is displayed:

usage of ff:
OPTIONS DESCRIPTIONS
-p <str> path for operator and fact file

-0 <str> operator file name

-f <str> fact file name

79

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

-E don't do enforced hill-climbing try before bestfirst

-g <num> set weight w_g in w_g*g(s) + w_h*h(s) [preset: 0]

-h <num> set weight w_h in w_g*g(s) + w_h*h(s) [preset: 0]

-0 switch on optimization expression (default is plan length)

The domain and the problem can be in a single file using -p or in separated files, using -o
for the domain definition and -p for the problem. As the domain will not change except
when comparing using cost-to-operator conversion against not using it, the domain and the
problems will be in separated files so changes in the domain apply to every problem.
Metric-FF uses two search algorithms, first Enforced Hill-Climbing and second Best-First
[Hoffmann, 2002]; the first one is unique to FF while the second is a widely accepted
search algorithm. The -E option forces the planner to use just Best-First in case this is
wanted. In this case, as Enforced Hill-Climbing has proven to be a rather performant
algorithm, Best-First will not be used [IPC 2002]. The -g and -h options are used to change
the weights of the path-cost function (the cost from the starting node to the current node)
and the heuristic function (the estimated distance to the goal) respectively. By default their
values are 1 for g(x) and 5 for h(x), and they allow to encourage exploration over
exploitation by increasing g(x) and decreasing h(x) and exploitation over exploration
when doing the opposite. Finally, the -O option tells the planner that there is a metric to
optimize. If the -O option is not used but there is a metric specified in the problem
definition, it will be ignored. The default optimization is plan length. All in all, the calls for
the experiments will be like the following one:

/ff -0 game3.PDDL -f game3-problem.PDDL -O

5.2 Installing and using ORTS

ORTS is released under the GPL license [GPL] and therefore is free for everybody. There
are two ways of getting ORTS. The first one is downloading the daily development
snapshot [ORTS snapshot] found in the ORTS web page. The file is a compressed tarball

80

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

that must be uncompressed before using. The second one is obtaining it using the
subversion server available for development: it is accessible not only to registered users
but also to anonymous users by providing a public user name and password. A subversion
client is needed to do this. Using the svn application widely available in Unix platforms,
the way of getting ORTS would be this one using “guest” as password when prompted:

svn co svn://anonymous@bodo1.cs.ualberta.ca:/all/pubsoft/orts

svn co svn://anonymous@bodo1.cs.ualberta.ca:/all/pubsoft/orts_data

In either case ORTS_DATA can be obtained or not, as it contains the graphical part of the
3D user interface and thus it is not necessary if it is not going to be used.

Once downloaded, ORTS must be compiled. ORTS has been developed under Linux and
works best in that operating system, but can be compiled in Windows using VC++ and in
Mac/OS. Several external libraries are needed before compilation: bjam, boost (libboost-
dev), glew (with the development package) and sdl-net-dev for the standard ORTS build
and OpenGL, glu and glut (or mesa, both of them with the development package too) for
the graphical part. Makefile and a C++ compiler (as G++) are also needed. Prior to
compilation, the environment variable OSTYPE must be one of the accepted by ORTS. It
is changed using different commands depending on the OS, being in a bash shell in Linux
"export OSTYPE=LINUX", for example. Some of the accepted values are LINUX for
linux-gnu, DARWIN for Mac, CYGWIN for cygwin and MSYS for MinGW. Once
created, from the folder orts3/trunk “make init” must be called to create the directory
structure, then simply “make” to compile ORTS and both the server and a client with the
3D graphical user interface implemented (named orts and ortsg respectively). All the
binaries will be deployed in the orts/trunk/bin folder. ORTS can be tested by opening two
terminal and executing “"bin/orts" in the first one and "bin/ortsg" in the second one once
the server is waiting for a player; this will show a single-player recreation of the
commercial RTS game Starcraft using the 3D graphical interface to show the features of
ORTS.

For the graphics client under Linux to reach frame rates over 20 fps currently a mid-range

NVIDIA graphics card is needed because the Linux ATI drivers do not support it. Under

81

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

Windows there is no such restriction. Having at least 128 MB of video RAM is mandatory
and 512 MB of system RAM is minimum when using the graphical user interface
developed by the creators of ORTS.

Although clients can be designed as the user prefers, it is recommended to use the available
libraries that come with ORTS and part from an already functioning client such as
sampleai. ORTS has a version of makefile which is designed to ease the compilation of
clients using ORTS libraries. The client must be in a folder or subnested folder in the
orts/trunk/apps folder (which determines the name of the client: for example, apps/orts
produces the application orts while apps/rtscomp07/game3/uofa produces the application
rtscomp(07.game3.uofa) containing a src folder where the file containing the main method
and other files to be compiled are placed. An "app.mk" file is needed, which is a makefile
include file that can use standard Makefile syntax. The first non-comment/whitespace line
should be "APP_DIR := " followed by the name of the client as specified above, for
example "APP_DIR := rtscomp(07.game3.uofa". The second line should be "APP_LIBS :=
" followed by a space-delimited list of ORTS libraries that must be included. These
represent folders in the "libs" subdirectory of the primary ORTS directory whose contents
will be made available for include and compilation when building the client. For instance,
"kernel" provides access to the .C and .H files in "libs/kernel/src", while "ai/movement"
provides access to the files in "libs/ai/movement/src". Almost every client will need at least
"kernel", "network", and "serverclient", and if graphical support is needed, "gfxclient".

After this is done, the client can be built by typing "make" followed by the application
name, for example "make rtscompO7.game3.uofa". The resulting binaries will be placed in
orts/trunk/bin folder as happened whith orts and ortsg when compiling the whole platform,
and will have the same name as the application that was compiled. Note that there are a
few different ways of compiling an application, with the most often used being debug
mode and optimised mode. For instance, "make MODE=opt ortsg" will compile ortsg with
optimisation flags, while "make MODE=dbg ortsg" will compile ortsg with debug flags.
Debug mode is the default, so specifying it is redundant.

There are plenty of options when running ORTS; besides every client has the option to add
additional ones for their own parameters. Thus, here only those related to running the third

game will be described. To execute the server for game3, the script

82

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

orts/trunk/tournament-2008/game3_orts (which actually is just executing *“./bin/orts
-game3 -bp tournament-2008/game3.bp -x 64 -y 64 -fplat 0.08 -nplayers 2”) can be run,
and to test it (or play it) with the 3D interface the script
orts/trunk/tournament-2008/game3_ortsg (which again is just executing ‘“bin/ortsg -p
tournament-2008/ortsg -refresh 0) can be used.

83

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

6. RESULTS

This section reports the experimentations made with the domain and a set of problems
produced to test the functionality of the design. As there are many features and parameters
that have a significant impact on the results, every subsection will try to be centered on a
single aspect so conclusions can be brought exclusively upon it without other issues factoring
in. All the experimentations will be done using a 3,5 Ghz Dual Core Intel Pentium Processor
with 512 MB RAM under Ubuntu Linux.

6.1 Cost-to-operator conversion and metrics

In state-of-the-art planners, plan quality is becoming increasingly important in contrast to
other aspects traditionally regarded as more important as the performance or the number of
problems solved. However, in many cases plan quality is measured by minimizing a value
that is modified by non-constant effects in the operators; that is, it is modified depending
on the state, and this is something state-of-the-art planners do not support. To solve this,
and as it was mentioned in section 4.3.4, cost-to-operator conversion was used. The
experiments in this section will be using a regular domain in which the goal is simply
getting a given number of rewards, using cost-to-operator conversion without using the
metric (minimizing the converted fluent that contains the final cost) and using cost-to-
operator conversion using the metric, hoping to get better plans for the last option. In this
case the problem to solve is a simple problem in which there are four soldiers, three
workers, a control center (not being attacked by any enemy soldier), a barracks, an

unexplored area and an enemy base with 3 defending soldiers.

This is the plan obtained without cost-to-operator conversion:

step 0: ATTACK SOLDIERO ENEMYBASEO POS5-1 POS1-1
1: ATTACK SOLDIER1 ENEMYBASEOQ POS5-1 POS1-1
2: ATTACK SOLDIER2 ENEMYBASEO POS2-5 POS1-1
3:END

84

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

0.00 seconds searching, evaluating 62 states, to a max depth of 0

0.00 seconds total time

total cost: -352.00

As it can be seen, it is a straightforward plan that uses the most rewarding action (attack)

and ends once the goal condition is satisfied. The next experiment will implement cost-to-

operator conversion using a standard plan length metric instead of minimizing the final

cost.

step 0: SCOUT WORKER3 POS5-1 POS6-2

1

© 00 N O o A W D

: ATTACK SOLDIER4 ENEMYBASEO POS3-3 POS1-1
: HARASS SOLDIER3 ENEMYBASEOQ POS4-2 POS1-1
: ATTACK SOLDIER2 ENEMYBASEO POS2-5 POS1-1
: ATTACK SOLDIER1 ENEMYBASEO POS5-1 POS1-1
: TO-END

: TO-END

: TO-END

: TO-END

:END

0.00 seconds searching, evaluating 16 states, to a max depth of 2

0.00 seconds total time

total cost: -1.00

In this case, more rewarding actions than in the case before are used, so this is in terms of

quality a better plan. As the (cost-increment) fluent used in the TO-END operator has a
value of 100, the cost is between 300 and 400 and most likely below 352, which was the
final cost in the previous case, so though better the current plan is not significantly better.

In the next case the metric (total-cost) will be used:

85

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

step 0: ATTACK SOLDIER4 ENEMYBASEO POS3-3 POS1-1
1: ATTACK SOLDIER3 ENEMYBASEO POS4-2 POS1-1

: MINE WORKER3 CC0 POS5-1 POS4-2

: MINE WORKERO CC0 POS5-1 POS4-2

: MINE WORKER1 CC0 POS5-1 POS4-2

: BUILDSOLDIER BARRACKSO0 POS5-1 SOLDIER4

: SCOUT WORKER2 POS2-5 POS6-2

: ATTACK SOLDIER4 ENEMYBASEO POS5-1 POS1-1

o N o O A WM

: ATTACK SOLDIERO ENEMYBASEOQ POS5-1 POS1-1
9: ATTACK SOLDIER1 ENEMYBASEO POS5-1 POS1-1
10: ATTACK SOLDIER2 ENEMYBASEO POS2-5 POS1-1
11: TO-END

12: END

0.40 seconds searching, evaluating 1102 states, to a max depth of 0

0.44 seconds total time

total cost: 100.00

Now the plan has changed much from the previous one. First of all, it must be noted that
the cost is below 100 (it displays 100 because TO-END adds the value of (cost-increment)
in the last call independently of the cost left in (pre-total-cost)) which is a much better
result. Second, here the planner has used non-rewarding operators (MINE and
BUILDSOLDIER) to build an additional soldier and get more rewards, which shows the
real improvement over the previous cases. Why BUILDSOLDIER uses SOLDIER4 is
because of how object reutilization is implemented as described in section 4.3.6. The
drawback of using the metric along with cost-to-operator conversion is the increased
number of evaluated nodes: in this case a total of 1102 states have been evaluated as
opposed to 62 with the standard design and 12 when using cost-to-operator conversion but
not the metric. This is a crucial fact as it took 0.44 seconds to solve a problem that was
solved in the previous cases in milliseconds, which creates the usual trade-off between
solution cost and time to compute. Another important fact that may be an explanation of
why the search space is so much bigger is that while plan length allows using Enforced
Hill-Climbing as the search algorithm, when using the final cost as metric Metric-FF uses a

86

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

best-first algorithm, which for Metric-FF usually yields worse results.

In this comparison, the metric used is favorable to the third case; that is, minimizing the
final cost, because when using plan length there is no improvement unless an operator
grants a reward greater than (cost-increase), or a sequence of operators than (cost-increase)
multiplied by the number of actions. On the other hand, in the third case it does not matter
how many actions are required to decrease the cost even if by a single one (cost-increase).
This explains why using the metric leads to such a huge : while when using plan length all
the nodes that do not grant a good enough reward are not expanded, when using the metric
almost all the nodes are expanded as long as they may contribute to improve the quality of
the plan, obtaining therefore such a big search space compared to the other cases. A simple
way of proving this is using a lower value for (cost-increase), which should lead to getting
results in both size and quality to the case in which the total cost is used as metric. The

next plan is the one obtained using a (cost-increase) of 25 and plan length as metric:

step 0: SCOUT WORKERS POS5-1 POS6-2
1: ATTACK SOLDIER4 ENEMYBASEOQ POS3-3 POS1-1
2: ATTACK SOLDIER3 ENEMYBASEO POS4-2 POS1-1
3: HARASS SOLDIER2 ENEMYBASEO POS2-5 POS1-1
: ATTACK SOLDIER1 ENEMYBASEO POS5-1 POS1-1
: TO-END
TO-END
: TO-END

: TO-END

9: TO-END

10: TO-END

11: TO-END

12: TO-END

13: TO-END

14: ATTACK SOLDIERO ENEMYBASEO POS5-1 POS1-1
15: TO-END

16: END

87

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

0.01 seconds searching, evaluating 74 states, to a max depth of 8

0.02 seconds total time

total cost: -1.00

Not surprisingly, this plan is better as it uses a reward granting operator more than in the
previous case but in return it evaluates 74 states instead of only 12, which proves the
aforementioned point. As a side note, here the cost is negative because its value is
displayed as -1 by default when using plan length as metric. Another thing worth
mentioning is that operators different than TO-END are used even when it has already
been used, which means that the planner tries to improve the plan even when the real goal
has already been achieved. To better illustrate this, an even lower value will be used, a
(cost-increase) of only 1.

step 0: HARASS SOLDIER3 ENEMYBASEO POS4-2 POS1-1
1: ATTACK SOLDIER4 ENEMYBASEO POS3-3 POS1-1
2: SCOUT WORKERS3 POS5-1 POS6-2
3: ATTACK SOLDIER2 ENEMYBASEO POS2-5 POS1-1

: ATTACK SOLDIER1 ENEMYBASEO POS5-1 POS1-1

: MINE WORKER2 CC0 POS2-5 POS4-2

: MINE WORKER1 CC0 POS5-1 POS4-2

: MINE WORKERO CC0 POS5-1 POS4-2

: BUILDSOLDIER BARRACKS0 POS5-1 SOLDIER3

© 0o N o o @ »

: TO-END

108: TO-END
109: ATTACK SOLDIER3 ENEMYBASEOQ POS5-1 POS1-1
110: TO-END

118: TO-END
119: ATTACK SOLDIERO ENEMYBASEO POS5-1 POS1-1
120: TO-END

121: END

88

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

1.09 seconds searching, evaluating 1778 states, to a max depth of 60

1.09 seconds total time

total cost: -1.00

In the most extreme of the cases, the behavior of the planner is very similar to the case in
which the total cost is used. As it can be seen, the plan is different from the other case (a
different worker is used, here a soldier harasses while in the other case all the soldiers
attack) and the total cost, calculated counting how many times TO-END has been used, is
109, greater than when using final cost, which was below 100. This added to the fact that
the values of the space-state and time are bigger (1102 versus 1778 and 0.44 versus 1.09
respectively) shows that using the metric seems to be the better option, but more
experimentation is needed. As the most extreme of the cases have been used, there is no
information in how both quality and performance evolve when decreasing the value of
(cost-increase). Thus, the next chart shows a series of experiments for values of (cost-

increase) ranging from 25 to 1.

2000
1800
1600
1400
1200

1000 — Cost

800 ~ States

Evaluated
600

400
200 —

1 5 10 15 20 25 (Cost-Increase

Figure 16: Cost-Increase impact

Figure 16 shows how from a value of 15 for (cost-increment) there is no gain in cost
optimization while the number of evaluated nodes grows exponentially. For a value of 15 it

89

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

takes 0.04 seconds to solve the problem evaluating 118 states, which is preferable to the

case in which the final cost was used as a metric.

As the optimization method used by the planner is essentially the same for both cases, it is
tempting to try the same thing when using the metric. However the case is different here,
as the plan that we had obtained before was already very good and the number of spaces
that were evaluated is already high: as (cost-increment) decreases there is no change in the
number of states until it is 64, in which case the number of states go up from 1102 to 1856
while coming up with the same plan. Besides, when it reaches 59 the evaluated states are
148612 (needing 107.21 seconds to finish) again without any improvement but this time
with two calls to TO-END, which means that the real cost is 60. This means that the plan
obtained the first time is probably the best one the planner can get in any condition, so it
makes no sense to keep on decreasing (cost-increment) to try to achieve good results.
Instead, the opposite will be tried; that is, increasing its value to see how the plans
deteriorate in quality. In this case it is not until (cost-increment) is 251 that the plan
worsens slightly after having evaluated 1102 states, just one fewer than the best case and
curiously the same that the ones evaluated when using a (cost-increment) of 25 using just
plan length instead of the cost as a metric.

The former results may mean that both metrics are probably equivalent for every problem
given the correct parameters. To test this, the problem will be made harder by eliminating
the barracks and initially giving to the planner the amount needed to build it. In this case,
when using the plan length with a cost increment of 15 (which was the optimal amount
before) it solves the problem with an equivalent plan to the best plan obtained so far (but
this time building the barracks, obviously) evaluating 1395 states, noting that when the
cost increment is 19 (8941 states evaluated) or bigger, the plan is worse as the barracks is
not built and no new soldiers are produced. On the other hand, the results when using the
metric are much worse: if cost increment is 125 or less, the planner is not able to finish in
600 seconds, limit time for the experiments, if only because the purpose of the design is to
be valid in real time environments. With a cost increment of 126, it generates the following
plan:

step 0: ATTACK SOLDIER4 ENEMYBASEO POS3-3 POS1-1
1: MINE WORKERO CCO POS5-1 POS4-2

90

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

: BUILDWORKER CCO0 POS4-2 WORKERO
: MINE WORKER1 CC0 POS5-1 POS4-2
: BUILDWORKER CC0 POS4-2 WORKERH1
: MINE WORKER2 CC0 POS2-5 POS4-2
: BUILDWORKER CC0 POS4-2 WORKER2

N o o AW

: MINE WORKERS3 CC0 POS5-1 POS4-2

: BUILDWORKER CC0 POS4-2 WORKER3

: MINE WORKER1 CC0 POS4-2 POS4-2

10: BUILDWORKER CC0 POS4-2 WORKERHT

11: SCOUT WORKERO POS4-2 POS6-2

12: BUILDWORKER CC0 POS4-2 WORKERO

13: ATTACK SOLDIERO ENEMYBASEO POS5-1 POS1-1
14: ATTACK SOLDIER1 ENEMYBASEO POS5-1 POS1-1
15: ATTACK SOLDIER2 ENEMYBASEO POS2-5 POS1-1
16: ATTACK SOLDIER3 ENEMYBASEO POS4-2 POS1-1
17: TO-END

18: END

0.24 seconds searching, evaluating 799 states, to a max depth of 0

0.28 seconds total time

total cost: 126.00

In this plan several workers are created and sent to mine even if that grants no rewards as
opposed to building soldiers from a newly created barracks and sending them to attack.
This is probably indicative that, when it disregards plan length, the planner tends to
consider in depth plans which may not be useful at all for both achieving the goal and
optimizing the metric. In this case for example the planner expands nodes that involve
creating workers because it has the resources to do so, this is, the prerequisites for the
operators are satisfied, and not because it uses them to improve the plan. Being this so,
using the metric to try to get above average quality plans is not a good solution as it is not
restrictive enough when exploring the search space.

91

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

To try to make the problem harder in different way, instead of eliminating the barracks
some enemy soldiers attacking the allied control center will be added. In this case even if
the problem is not much harder (just a single soldier attacking the enemy base) the
situation is the same as before: using plan length the problem is solved with a very good
plan evaluating just 92 states using an increase-cost of 15, while using the final cost means
that the planner stagnates and does not solve the problem. To shed a bit of light on this, an
analysis of how the planner works when searching through the search space must be done.
As explained in section 2.3.2, heuristic planners use two functions to determine how good
a node is: g(x), which is the weight from the initial state to the current node, and h(x),
which is a heuristic function that guesses how far from the goal the current node is. When
using plan length, both functions are used just like in every other planning problem,
considering shorter plans as better and more easily computable; on the contrary, when
using the final cost as metric, g(x) is virtually unused until the firsts calls to TO-END are
made, as it is only relevant for that operator. The problem with this is that if a node is far
from the goal and there is no possibility of using TO-END because the rewards-threshold
has not been reached, the evaluation of the node is very inaccurate as there is almost no
information of how good it is. Besides as g(x) is not used, plan length does not matter and
the planner deepens expanding nodes that may not be useful for the plan but that are not
considered as worse as the value of g(x) is still 0. A possible solution is allowing the
planner to use TO-END from the very beginning so both g(x) and h(x) are meaningful
throughout the whole plan. To do so, the hard goal, the minimum amount of rewards
specified by (rewards-threshold) will be set to 0. This may allow the generation of very
low quality plans, but at least the heuristic function should be more accurate. This time, the
same problem which was not solved before (basic problem plus one attacking enemy

soldier) will be tested with a value of 0 in (rewards-threshold):

step 0: MINE WORKERS3 CCO POS5-1 POS4-2
1: MINE WORKER2 CCO0 POS2-5 POS4-2

\°]

: SCOUT WORKERO POS5-1 POS6-2

: ATTACK SOLDIERO ENEMYBASEO POS5-1 POS1-1
: MINE WORKER1 CC0 POS5-1 POS4-2

: BUILDSOLDIER BARRACKS0 POS4-2 SOLDIERO

: ATTACK SOLDIERO ENEMYBASEOQ POS4-2 POS1-1
: ATTACK SOLDIER1 ENEMYBASEO POS5-1 POS1-1

o N o o A~ W

: ATTACK SOLDIER2 ENEMYBASEO POS2-5 POS1-1

92

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

9: ATTACK SOLDIER3 ENEMYBASEO POS4-2 POS1-1
10: ATTACK SOLDIER4 ENEMYBASEO POS3-3 POS1-1
11: TO-END

12: END

0.19 seconds searching, evaluating 1915 states, to a max depth of 0

0.24 seconds total time

total cost: 100.00

Now the result is surprising: not only it was able to solve the problem but it has also given
quite a good plan (if it had used a soldier to defend the plan would be better, but since it
would have meant a call to TO-END in either case, for the planner this plan is as good as
the optimal one). The search space, composed of 1915 evaluated states, is reasonable,
although still not as good as when not using the final cost as metric. Curiously enough,
when decreasing (cost-increase) hoping to get a finner plan, at 50 the best plan is obtained
evaluating in this case just 1865 states, so both the plan quality and number of evaluated
nodes are better. This result questions whether the use of a hard goal has any positive
impact in either plan quality or performance. If this value is increased, once its value is
above the rewards the first non-intermediate operator grants (for this particular problem
and parameters SCOUT, granting 25 rewards and used always in third place after MINE
being used twice) again it is unable to solve the problem in less than 600 seconds. It seems
then that initially the planner tends to prefer non-rewarding operators (this can be seen as
well in a previous plan obtained when testing the different values of increase cost) and
unless the goal is reached with a single call to an operator that grants a reward it expands
nodes evaluating intermediate operators while possible. To check if this happens as well
when using plan length as metric we will compare the number of states evaluated and the

quality of the plans for different values of reward threshold:

93

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

250
a
200 /[N
[
/
150 /
| :/ﬁ\”/ o , — Cost
100 /) / — States
| Evaluated
50 / ~ |
J/
/
0/

50 150 250 350 450 550 650

0 100 200 300 400 500 600 Reward-Threshold

Figure 17: Reward-Threshold impact

In this chart it can be seen that as reward-threshold increases, the cost increases and the
number of evaluated states decreases slightly, which was the opposite than expected, as
setting a minimum quality should mean getting better overall plans. Besides, when
rewards-threshold gets closer to the maximum rewards that can be obtained with the
optimal plan, the number of evaluated states rises up, having 32531 evaluated nodes when
reward-threshold is 680. All in all, the hard goal not only does not contribute to achieve a
minimum quality in the plans but also may complicate the problem resolution using both
metrics.

Now that it was cleared up that reward-threshold was hindering the final cost metric, the
wisest decision would be taking it out of the domain definition. However if that is done the
situation reverts to when rewards-threshold was being used, this is, intermediate operators
are preferred over reward-granting ones. To make sure that this is not due to the way
Metric-FF relaxes tasks in its heuristics functions when dealing with numeric effects
[Metric-FF], a dummy predicate was added substituting the rewards-threshold condition
and in the initial state so it is satisfied from the beginning. In this case the results are even
worse, so the main point here is that rewards-threshold is relevant for the domain.
Something that may be not clear and that should be noted is that if the initial amount of
obtained rewards is 0 and rewards-threshold is 0 as well, the hard goal is not satisfied
because the comparison is strictly greater than rewards-threshold. Actually the optimal

value for rewards-threshold is any value in the range from O to the estimated amount that

94

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

the first reward-granting operator that grants the smallest reward gives (as the experiments
showed before), so the condition can be fulfilled early in the plan but not from the
beginning. If we give rewards-threshold a value of -1, so the goal is satisfied from the
beginning, again the result is much worse, confirming this fact. When instead of using the
final cost metric, plan length is preferred, there is no significant change in using or not
such a value, though plans are slightly better and the number of evaluated states is slightly
smaller for a value of O compared to a value of -1, so the domain and the rewards-threshold
will be the same for both metrics in further experimentation. The cause of this
phenomenon is unknown and further experimentation should be done after analyzing in
depth the inner functioning of Metric-FF; however, the objective of this work is to
implement a domain as general as possible so it can be used by any planner and thus
particular issues to a given planner, although interesting for research, are out of the scope
of the work.

Now that we know that the optimal value for rewards-threshold is O in probably most of
the cases we will go back to the three problems used for experimentation and solve them
again using this value. A fourth problem combining the lack of barracks and the attacking
enemy soldier will be used as well for a more difficult situation. As a reminder, the basic
problem consists on four soldiers, three workers, a control center (not being attacked by
any enemy soldier), a barracks, an unexplored area and an enemy base with 3 defending
soldiers. The optimal value of increase-cost will be used for every case, so the displayed
results will be the best case out of a series of experiments with different values of increase-

cost.

95

Modelling a RTS Planning Domain with Cost Conversion and Rewards

Vidal Alcazar Saiz

Problem Plan length

Final cost

Basic

cost increment of 10.

Best plan, 192 evaluated states,

Best plan, 359 evaluated states,

cost increment of 170.

enemy

Basic with attacking

cost increment of 20.

Best plan, 153 evaluated states,

Best plan, 1865 evaluated states,

cost increment of 50.

barracks

Basic without

cost increment of 15.

Best plan, 207 evaluated states,

Best plan, 547 evaluated states,

cost increment of 175.

barracks

Basic with attacking

enemy and without

Suboptimal plan, 249 evaluated
states, cost increment of 15.

Bad plan, 52934 evaluated
states, cost increment of 200.

Table 3: Comparison of metrics in simple problems

This table clearly shows that the conventional plan length metric outperforms the final cost

metric in all the cases and with more constant values of cost-increase (which is a great

advantage if they have to be generated dynamically while replanning). Particularly

important is the most complex problem, in which the output of the planner for the final

cost metric deteriorates to the point of returning a bad plan in which a behavior similar to

that observed with high values of rewards-threshold is obtained apart from evaluating a

much higher number of states:

step 0: MINE WORKER3 CCO0 POS5-1 POS4-2

1:

o N o g A WM

9:

MINE WORKER2 CC0 POS2-5 POS4-2

: BUILDWORKER CC0 POS4-2 WORKER3
: SCOUT WORKERS3 POS4-2 POS6-2

: BUILDWORKER CC0 POS4-2 WORKER3
: MINE WORKERO CCO POS5-1 POS4-2

: BUILDWORKER CC0 POS4-2 WORKERO
: MINE WORKER1 CC0 POS5-1 POS4-2

: BUILDWORKER CC0 POS4-2 WORKERH1

MINE WORKERO CC0 POS4-2 POS4-2

10: BUILDWORKER CC0 POS4-2 WORKERO

96

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

11: ATTACK SOLDIERO ENEMYBASEO POS5-1 POS1-1
12: ATTACK SOLDIER1 ENEMYBASEO POS5-1 POS1-1
13: ATTACK SOLDIER2 ENEMYBASEO POS2-5 POS1-1
14: ATTACK SOLDIER3 ENEMYBASEO POS4-2 POS1-1
15: ATTACK SOLDIER4 ENEMYBASEO POS3-3 POS1-1
16: TO-END

17: END

16.22 seconds searching, evaluating 52934 states, to a max depth of 0

16.27 seconds total time

total cost: 200.00

If we take a look at the first part of the plan we can see that intermediate operators are
extensively used for no good reason, an analogous situation to that obtained with restrictive
hard goals. If increase-cost is decreased to get a finner plan, the planner is not able to solve
the problem in less than 600 seconds. This means that the final cost metric, although
initially promising, is less adequate in all the problems and useless for more complicated
ones. This might be not because of the metric itself but because of not being to use
Enforced Hill-Climbing when minimizing a numeric value, but best-first has demonstrated
in several occasions to be a rather consistent search algorithm and the difference is just too
big for this to explain the results.

A last thing that must be taken into account is that the two fluents used as parameters in the
experiments, rewards-threshold and cost-increment, are not absolute values, but depend on
the rewards and the costs used by the operators. If the rewards and operators were to
change, so should do rewards-threshold and cost-increment to achieve the same results,

this is, they are relative parameters and not general to all the possible problems.

6.2 Problem complexity

97

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

In the earlier experiments a very simple problem was used to compare metrics. However
this domain is meant to be real life applications and so it will face harder problems. One of
the main points in computing when solving problems independently of the field is seeing
how time and memory needed to solve them scale as the difficulty of problems rise up. The
difficulty of problems depends on multiple factors and analyzing how they affect the
complexity is usually very insightful as it allows to redesign the solving method to
optimize the performance of the used technique. In this case, each potential factor will be
analyzed independently so the results are more accurate.

6.2.1 Initial value of pre-total-cost

As seen in the domain definition in section 4.3.4, the value to minimize if the number of

reward-granting actions in the plan is n is

n

totalCost =initial Cost — Z (reward,—cost,)
i=1
All the values in the equation are parameterizable, but rewards and costs are associated
to operators and units and their values are not constant. Initial cost, on the other hand, is
assigned once to the fluent pre-total-cost at the beginning of the problem. As it was
mentioned when described, initial-cost should leave a margin of improvement so at least
in the end a TO-END call is done but should be limited so no unnecessary uses of TO-
END happen too. Ideally the value should be between the rewards minus the costs of the
best plan and that value plus the value of cost-increase. Obviously, the best plan is
unknown, so the value must be guessed instead. Since in the problem definition the
maximum rewards are calculated for each of the operators and they are exclusive
meaning that if a soldier is used to attack it can be used to harass, for example, a
possible upper limit to the value can be calculated by multiplying the number of units of
each type that exist (plus those that could be produced) by the highest of the maximum
rewards of the actions they can perform. Directly using this upper limit is probably a
bad idea since if the planner is able to produce a very good plan it could be too high or if
the planner does not use all the available units it could be too low, but it is a good

guideline in which to base our assumptions.

98

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

Theoretically the main reason why this value could alter the performance of the planner
is that the planner does not restrict itself once the hard goal has been achieved and tries
to improve the plan using operators even between calls to TO-END. Since plans are
sequence of actions, these operators can be used at different points, leading to
equivalent states but generating additional branches in the search space that may be
explored by the planner increasing the time needed to return a suboptimal plan.
Generally, the shorter the plan the less likely is this to happen as there are fewer points
in which the planner may decide to further explore the state-space instead of keeping
using TO-END, so if additional calls to TO-END are needed a downtime in
performance may occur. To test this the most complex of the problems used in the
previous section will be solved using different initial values for the cost, showing them
in a chart to illustrate the evolution of the size of the number of evaluated states. For this
problem an almost optimal value is 800, so the experiments will depart from that value

using the plan length as metric and a cost-increment of 15 (meaning that every 15 units
an additional call to TO-END is needed):

16000

14000

12000 [

10000 [
8000 [

\ — States Evaluated
| \
6000 ‘

4000 / \ \
2000 [\ \
/ \ \ S

0 —— ./ \/ \\ pd

850 950 1050 1150 1250 1350 1450
800 900 1000 1100 1200 1300 1400 1500

Figure 18: Initial-cost impact

As shown in the chart, the results do not seem to follow a particular distribution. Early
conclusions may lead to think that the distribution is semi-Gaussian, but they vary
greatly depending on the problem without a clear link between the results. The plans

99

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

were all either the best one or the immediate next one, so the quality did not decrease.
Something that must be noted is that for the last case, an initial cost of 1500, a total of
59 calls to the TO-END operator were done as opposed to 14 calls to “real” operators,
an already high proportion, so it is not clear whether additional calls can negatively
affect the result with a high probability. Just to check the behavior of the final cost
metric, an easier problem (basic problem without barracks with a cost increment of 175)
will be solved in a similar way. When done, a curious fact is observed: even if no calls
to TO-END are needed, the space-state size greatly increases, and when a single
additional call is needed the planner is not able to solve the problem in a reasonable
time. Again this seems to confirm the conclusions of the previous section, that when
using the total cost metric the planner tends to wander around the search space due to

the uselessness of the g(x) function in the heuristic.

6.2.2 Number of units and other in-game parameters

Usually in RTS games a great number of units exist at the same time. This is considered
one of the main computational problems RTS games have, as not only new actions must
be calculated for each unit but also as they can interact among them more targets for
every action exist. Theoretically if a unit of a type can perform only one action having
as a target a unit of the same type, n actions with (n-1) possible targets can be possible,
which would lead to a complexity of O(n?) in the worst case. If there is more than a
single action it affects polynomially the situation, the same case as if there are several
targets for each action. Then, if there are a actions with ¢ targets and »n units, the final
complexity in the worst case would be O(an'*’), a potentially high order, which is why

the number of units and actions matters so much to the game designers.

In the current domain, the number of actions and targets are limited, 2 or 3 actions per
type of unit which have as target either an enemy base (ATTACK and HARASS), a
control center (MINE), an unexplored location (SCOUT) or nothing at all
(BUILDBARRACKS). The number of enemy bases and control centers will be more
likely below 2 or 3 during the whole game, so they are not important factors.
Consequently, the experiments will be done changing the number of soldiers, workers
and unexplored areas. The number of minerals (both at the initial state and those

100

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

gathered throughout the plan) can also affect the state-space size as they can be used to
produce additional units, so two measures will be taken: first, when experimenting with
other factors the number of initial minerals and those obtained per MINE action will
always be 0 so they do not alter the results; second, a series of experimentations will be
done using exclusively these two values as it will be done with the other factors as well.

The basic problem is very limited because it does not grant enough rewards for the
planner to try to use all the available soldiers if their number is too high, so the number
of possible targets for the actions that soldiers can perform will be increased. In total
there will be two enemy bases and three allied control centers, being defended by 3 and
4 soldiers and attacked by 2, 1 and 4 soldiers respectively. Other than that workers will
be taken out and there will not be a barracks to force the planner to focus solely on
military actions. The initial cost for pre-total-cost may change because the more soldiers
are, the more rewards can be obtained and leaving it with a constant value would mean
that the results for the problems with few soldiers are worse than what they really are.
The results will be displayed in the following chart:

1000
900 /ﬂ\
800 /
700 y
600 /
500 / — States Evaluated

400 /
300 e N /\///

200
100 —

~
/_//

0
4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Figure 19: Number of soldiers impact

As expected, the size of the number of evaluated states increases as the number of soldiers
goes up, but its impact is not important. The last of the experiments, with 40 soldiers, took
less than 5 seconds to be solved, which is a fairly good result taking into account that 40

101

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

soldiers is already a rather high number for a RTS game. Besides the number of evaluated
nodes seems to scale linearly instead of exponentially, probably the most important point
when extrapolating this design to more complex problems. This can probably be explained
by the way plans are elaborated: in most of the cases, the soldiers were used sequentially,
meaning that they were usually selected depending on their order in the parsing of the
problem by the planner. The following plan is a very clear example, using almost the 40

soldiers in inverse order:

step 0: HARASS SOLDIER39 ENEMYBASEO POS4-2 POS1-1
1: TO-END
: DEFEND SOLDIER38 CC2 POS2-5 POS7-5
: DEFEND SOLDIER37 CC2 POS5-1 POS7-5
: DEFEND SOLDIER36 CC2 POS5-1 POS7-5
: DEFEND SOLDIER35 CC2 POS7-3 POS7-5
: DEFEND SOLDIER34 CC2 POS3-3 POS7-5
: DEFEND SOLDIER33 CC2 POS4-2 POS7-5

o N o o W N

: DEFEND SOLDIER32 CC2 POS2-5 POS7-5
9: DEFEND SOLDIER31 CC1 POS5-1 POS3-3
10: DEFEND SOLDIER30 CC0 POS5-1 POS4-2
11: DEFEND SOLDIER29 CC0 POS4-2 POS4-2
12: DEFEND SOLDIER28 CC0 POS2-5 POS4-2
13: DEFEND SOLDIER27 CC0 POS5-1 POS4-2
14: DEFEND SOLDIER26 CC0 POS5-1 POS4-2
15: DEFEND SOLDIER25 CC1 POS7-3 POS3-3
16: ATTACK SOLDIER24 ENEMYBASEO POS3-3 POS1-1
17: ATTACK SOLDIER23 ENEMYBASEO POS4-2 POS1-1
18: ATTACK SOLDIER22 ENEMYBASEO POS2-5 POS1-1
19: ATTACK SOLDIER21 ENEMYBASEO POS5-1 POS1-1
20: ATTACK SOLDIER20 ENEMYBASEO POS5-1 POS1-1
21: ATTACK SOLDIER19 ENEMYBASEO POS4-2 POS1-1
22: ATTACK SOLDIER18 ENEMYBASE1 POS2-5 POS6-0
23: ATTACK SOLDIER17 ENEMYBASEO POS5-1 POS1-1
24: DEFEND SOLDIER15 CC2 POS7-3 POS7-5

102

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

25: ATTACK SOLDIER16 ENEMYBASEO POS5-1 POS1-1
26: ATTACK SOLDIER14 ENEMYBASEO POS3-3 POS1-1
27: ATTACK SOLDIER13 ENEMYBASEO POS4-2 POS1-1
28: ATTACK SOLDIER12 ENEMYBASE1 POS2-5 POS6-0
29: DEFEND SOLDIER11 CC0O POS5-1 POS4-2

30: DEFEND SOLDIER9 CCO POS4-2 POS4-2

31: TO-END

32: ATTACK SOLDIER8 ENEMYBASE1 POS2-5 POS6-0
33: DEFEND SOLDIERS CC2 POS7-3 POS7-5

34: ATTACK SOLDIER2 ENEMYBASE1 POS2-5 POS6-0
35: DEFEND SOLDIER10 CC0O POS5-1 POS4-2

36: TO-END

37: ATTACK SOLDIER7 ENEMYBASEO POS5-1 POS1-1
38: TO-END

39: END

2.54 seconds searching, evaluating 846 states, to a max depth of 2

3.46 seconds total time

total cost: -1.00

This may mean that costs that depend on pathfinding do not have an important impact and
that the planner practically ignores them. Actually the plans are coherent and tend to use
the units appropriately, which leads to think that it is not the case. Nevertheless, to check if
this is true, costs were increased by multiplying by 10 the cost obtained with the Manhattan
distance. When this was done the behavior was practically the same but the number of
evaluated states was bigger, probably because of the higher level of constraint that greater
costs impose to the selection of operators, so this is probably an inner issue of Metric-FF

instead of a consequence of the way costs are implemented.

Despite the previous positive results, there is a very important issue that the chart does not
reflect: every experiment has been done using a suboptimal value of increase-cost, so good
results are to be expected. Furthermore, as the number of soldiers increases, the problem

103

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

becomes more easily influenced by the variation in the initial cost to the point that for the
experiments with more than 30 soldiers a too big value could rend the problem unsolvable
because the planner used too much memory. Besides this happened with differences in the
value of the initial cost as small as 200 when the optimal value was around 5000, which
implies that the selection of the value of the initial cost is not only critical for the resolution
of the problem but also a very hard task if generated dynamically because of the small
margin where it becomes useful. Of course, the initial cost depends largely on the other
related parameters as the rewards, the costs and increment-cost, so the problem it is not
associable exclusively to this variable, but this shows how often the parametrization and

not the design of the solution is the hardest part of solving the problem.

Now the same problem will be solved for workers. It will not be tested as thoroughly as the
number of soldiers because analogous results are expected, but nevertheless some
experiments will be done because of how much more difficult is to obtain rewards by using
workers, as they have either to scout (which grants strictly diminishing rewards) or mine to
produce soldiers that will obtain the rewards. Something that must be noted is that a similar
case to the restriction that rewards-threshold imposed to the planner (in the sense that if it
was greater than the smallest reward it made the planner search the state-space in a breadth
fashion) happens with the amount of mineral that a workers gathers with MINE: if that
amount is less than the cost of producing a soldier, instead of chaining several calls to
MINE with different workers and building a soldier to get rewards, it seems to evaluate
that plan as a bad one and explorers the other possibilities which leads to searching over a
huge space. Setting the amount of minerals gathered to the cost of a soldier is a rather
unrealistic approach but this problem can be overcome using abstraction (using squads of
workers instead of individual ones) and is probably the only option to avoid stagnation.
Apart from that another factor that complicates the resolution of the problem is the
accumulated cost of the barracks: with each additional soldier produced at a barracks, its
accumulated costs increases so using soldiers produced from the same barracks is not as
useful as producing them in parallel. This is a constraint on the problem and forces the
planner to look further in the search space in order to improve the quality of the plan. Since
in this experiment the main goal is to isolate the impact of the number of workers in the
problem, the additional cost of producing a soldier will be set to 0. For further
experimentation it can be interesting to see how the complexity of the problem evolves as
this variable changes, but for now it will not be taken into account. The next chart shows

the series of tests done for the aforementioned purpose:

104

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

5000
4500
4000 —
3500
3000
2500 — States Evaluated
2000
1500 —
1000 —
500

4 5 6 7 8 9 10

Figure 20: Number of workers impact

In this case the range of values for the number of workers is much shorter because of two
reasons: first, there are many more influential factors that scale as the difficulty of the
problem rises and measurements may be not as accurate as with the soldiers, and second,
even with relatively small numbers of workers the number of evaluated states is already
quite big. Actually, when using 11 or more workers the problem is so hard that the planner
cannot solve it without using up too much memory. This is expected as getting rewards in
this case is using miniplans (consisting on mining, producing a soldier and either attacking,
harassing or defending) for every available worker, but the values are too high for this
design to be effective used in real time environments. However and as it happened with the
minerals gathered per MINE operator, using squads to further abstract the problem may be
a possible solution. The main problem is how to separate the managing of the SCOUT
action, which is performed by a single worker and gets no benefit if done by a squad, and
the MINE action, which works more or less the same performed either by squads or by

single workers, but an accurate interpretation of the plan by the player may solve this issue.

Once the impact of the number of workers has been measured and to ensure the
completeness of the analysis, the parameter that was left out in the previous experiment,
the accumulated cost that barracks have when building a soldier, will be used as the
variable for a new series of tests. In this case, the problem will be the same as before but
using a fixed number of workers (seven workers because the size of the search space is still
manageable by the planner and leaves margin for generating a diverse range of plans of

105

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

different qualities) and with three barracks instead of only one to see if the planner

generate plans with concurrent actions. These are the results:

35000
30000 /
25000 /

20000

/ — States Evaluated
15000 /

10000

5000 =

0 10 20 30 40 50 60 70 80

Figure 21: Accumulated-cost impact

Accumulated-cost is another constraint whose effect was expected to be detrimental to the
performance of the planner, but it was not expected to have such an impact. In this case the
progression of the size of search space is exponential even though the initial value of pre-
total-cost was modified accordingly so it would not influence the results. What is worse, its
effect on the plan is almost insignificant as in most of the cases the planner chooses the
same barracks instead of preferring other with lesser costs, leading to no concurrency at all
when producing new soldiers.

As the last experiment of this section, the impact of the initial number of minerals will be
measured. Basically, apart from scouting workers gather mineral which is used to produce
soldiers which in turn reap the rewards, so having an initial amount of mineral greater than
zero can lead to the same plan without the MINE action. Since these partial plans are
shorter than the process of gathering and producing, they will probably affect the size of
the number of evaluated states less than the number of workers but still more than the
number of soldiers. The parameters for this experiment will be the same as those for the
workers, though obviously without workers and varying the value of the fluent mineral.
When given enough mineral to produce 40 soldiers, the maximum number of soldiers that

106

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

was used in an earlier experiments dealing with soldiers, the planner evaluates 6947 states,
more or less 7 times the number of states evaluated when using soldiers directly. Besides,
the number of states scales linearly with the units of minerals, so the results are quite good
having into account that the reward granting operators cannot be used unless a soldier is
produced, which may had mislead the heuristic function.

6.2.3 Improvements of object reutilization

In section 4.3.6 a solution was proposed to overcome the limitations of PDDL 2.1 when
working with sets of identical objects. The main issue was that since in PDDL 2.1 it is
impossible to express a number of objects of a given type, individual objects must be
declared in the problem. These objects are treated by planners as different possible
arguments for the operators and lead to evaluating identical states in practice as different
states in the state-space, increasing the complexity of the search. Therefore, a predicate
was introduced as a prerequisite for operators that created units to force the planner to
choose the arguments only from one object and not from all the possible options. To test
the effectiveness of this technique, the problem to solve will be analogous to the
problem solved when measuring the impact of the number of initial minerals in the
previous subsection, but here several objects of the type soldier will be added in the
initial state along with the ready predicate to replicate a common situation in which to
allow building several soldiers additional objects of that type are added without reusing
them. The normal problem for 500 minerals, which allows the creation of 10 soldiers,
was solved evaluating 278 states; however, if there are 10 objects of the type soldier
with the ready predicate, the resolution implies evaluating a total of 4178 states, a much
worse situation. Not only that, when doing so and due to the increased complexity of the
problem, the planner comes up with a worse plan than in the case in which object
reutilization was used. This confirms that using object reutilization is a good solution to
some of the limitations of PDDL 2.1 to the point that a medium difficulty problem for a

heuristic planner becomes a trivial one.

107

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

6.2.4 Parameters of the planner

For the experimentation Metric-FF was used as heuristic planner. As described in
section 5.1, Metric-FF can be executed with different options, two of which are relevant
for the planning domain. First, the modifiers of the g(x) and the A(x) functions: This is a
feature common to most of the heuristic planners and determines the balance between
exploration and exploitation by assigning different weights to the cost from the initial
state to the current state and the cost of the heuristic function respectively. This is of
vital importance for the proposed planning domain as many of the problems arose when
the planner gave special preference to exploration over exploitation due to how rewards
were granted. Consequently, several experiments will take place using these values. The
proposed problem will be similar to one of the problems used in the previous
experiments trying to include all the relevant factors of the design: it has 10 soldiers, 5
workers, 100 minerals, 3 allied bases attacked by 4, 3 and 0 enemy soldiers and 2 enemy
bases defended by 3 and 6 enemy soldiers. As a side note it is worth mentioning that the
modification of these parameters is possible only when using best-first as the search
algorithm and not when using enforced hill-climbing, which is the Metric-FF's
algorithm by default. Since the final value of the function used to evaluate the utility of
expanding a node is the addition of g(x) and h(x) (a completely linear function), the
value that will be used will be the proportion between the weight of g(x) and the weight
of h(x), being the actual value the weight of h(x) divided by the weight of g(x) as the
value of the first is usually much higher than the value of the latter. However when
doing the experiments a curious fact is observed: the size of the search space and the
quality of the plans do not scale as the proportion changes, but instead there are only
two cases determined by a threshold which consists on the comparison of the two
values: independently of the proportion, when the weight of A(x) is greater than the
weight of g(x) a plan with a number of evaluated states is obtained and when it is the
opposite case, another plan and number of evaluated states are obtained. Particularly,
the regular case, a greater value for the weight of h(x), yields better results both in plan
quality and search space size, being the difference in many cases that the problem is
only solvable with this configuration, as otherwise if exploration is favored the planner
expands too many nodes and does not finish in a reasonable time. This is an expected
result because of how badly the planner behaved when it tended to search in width
depending on the values of other parameters, but why it is a threshold is something that

is not clear. This is probably due to the heuristic function of Metric-FF, so further

108

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

experimentation with other planners would be advisable. Nevertheless, again this is out

of the scope of this work, so it will be done only in future works.

The second parameter of the planner that can be changed is the search algorithm:
Metric-FF implements enforced hill-climbing, an algorithm particular to this planner,
but also supports best-first search, so an option is given to choose from the two of them.
This parameter is not relevant for our work, as the design tries to be as independent
from the planner as possible, but it may be insightful to explain the results of former
experiments. In this case, the same problem that was used before will be solved using
both methods. When done, best-first obtains a much better plan (it minimizes the cost to
45 compared to 270, both from an initial cost of 2300) but evaluates more states (1605
states compared to 971). Similar experiments give comparable results, though the
differences are not great. Explaining this would mean deeply analyzing both algorithms,
so we will not enter into detail, but nevertheless it is interesting to note that actually the
result expected was this one, as enforced hill-climbing tends to outperform best-first in
time at the expense of quality [Hoffmann, IPC 2002].

6.2.5 Practical utility of the plans

In the previous subsections, the main technical aspects of the domain have been
analyzed in regard to adequateness, efficiency, etc... However, it is very important not to
forget which was initially the main goal of the work: developing an Al system that
could play in a such complicated game like a RTS game. Until now the quality of the
plans has always been measured in function of the final cost (or the number of calls to
the TO-END operator), but it is important to note that that cost comes from an equation
specifically designed for the domain definition and that may not be directly translated
into terms of usefulness. As judging how appropriate is a plan is a task that is
impossible to accomplish automatically, plans should be evaluated by humans with a
certain degree of experience in RTS games. Apart from that, there is no other way of
telling if a plan is well suited for the problem or not. Therefore, in this section a plan for
what could be a standard problem will be analyzed in order to check whether it could be
a valid plan for a computer player to base its behavior on.

109

Modelling a RTS Planning Domain with Cost Conversion and Rewards

Vidal Alcazar Saiz

The problem to solve is roughly the same used in the previous subsection to test the

difference between the search algorithms: 10 soldiers, 5 workers, 100 minerals, 3 allied

bases attacked by 4, 2 and 0 enemy soldiers and 2 enemy bases defended by 3 and 7

enemy soldiers. The problem is actually the problem that appears in the Annex C as an

example of input for the planner, but to better understand the problem the plan

generated will be thoroughly explained. Here is the plan obtained when using best-first

search:

step 0: DEFEND SOLDIERO CC1 POS4-4 POS3-3

1:

© 0o N o o » W0 N

—_ .
- O

12:
13:
14:
15:
16:
17:
18:
19:
20:
2

—_

22:
23:
24

DEFEND SOLDIER1 CC0O POS7-2 POS4-2

: SCOUT WORKER2 POS7-2 POS7-2

: DEFEND SOLDIER2 CC0 POS6-5 POS4-2

: ATTACK SOLDIER3 ENEMYBASEO POS1-3 POS1-1
: ATTACK SOLDIER4 ENEMYBASEO POS2-3 POS1-1
: DEFEND SOLDIER5 CC0 POS5-3 POS4-2

: ATTACK SOLDIER6 ENEMYBASEO POS1-7 POS1-1
: ATTACK SOLDIER8 ENEMYBASEO POS4-1 POS1-1
: BUILDSOLDIER BARRACKS0 POS4-2 SOLDIERO

: ATTACK SOLDIERO ENEMYBASEO POS4-2 POS1-1
: ATTACK SOLDIER7 ENEMYBASEO POS3-2 POS1-1

SCOUT WORKER1 POS5-4 POS6-3
BUILDSOLDIER BARRACKS0 POS4-2 SOLDIERO
ATTACK SOLDIER9 ENEMYBASEO POS4-2 POS1-1
MINE WORKER4 CC2 POS1-1 POS7-5
BUILDSOLDIER BARRACKS0 POS4-2 SOLDIER9
ATTACK SOLDIER9 ENEMYBASEO POS4-2 POS1-1
MINE WORKERS3 CC2 POS4-6 POS7-5
BUILDSOLDIER BARRACKS0 POS4-2 SOLDIER9
DEFEND SOLDIERO CC0O POS4-2 POS4-2

: MINE WORKERO CC0 POS4-2 POS4-2

BUILDSOLDIER BARRACKS0 POS4-2 SOLDIERO
ATTACK SOLDIERO ENEMYBASEO POS4-2 POS1-1
DEFEND SOLDIER9 CC0 POS4-2 POS4-2

110

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

25: TO-END
26: TO-END
27: END

11.14 seconds searching, evaluating 13288 states, to a max depth of 0

11.45 seconds total time

total cost: 0.00

Objects are used in the problem definition to represent concepts: CCO is the allied base
attacked by 2 enemy soldiers, CCl1 is not attacked, CC2 is attacked by 4 enemy soldiers,
ENEMYBASEQ is defended by 3 enemy soldiers and ENEMYBASEI is defended by 7
enemy soldiers. In the plan, 5 soldiers defend CCO0, another one defends CC1, 9 soldiers
attack ENEMYBASEQ, 3 workers scout, 3 gather mineral and 5 new soldiers are produced.
The results are quite promising: the plan is attacking with the main force the least defended
base while defending the two bases that are attacked by fewer soldiers and abandoning the
base that is attacked by 4 soldiers. This is because of the way the number of bases
determine the rewards: the more there are, the less rewarding is attacking or defending
them. In this case, the enemy has two bases while the player has three, so if both sides lose
one, the new situation is favorable to the player, expressed by dividing the rewards for
attacking between two and the rewards for defending between three. The plan implies
defending a base which is not attacked with a soldier, but this is due to the fact that the
number of soldiers used in the problem definition is not the real number of enemy soldiers
but the number of soldiers plus a number that ensures that the battle is won, so even if
there are no soldiers attacking an allied base, in the problem definition there always be at
least that number of additional enemy soldiers. Workers are also effectively used: the
rewards for scouting decrease as individual workers are sent to explore undiscovered areas,
so in the first half of the plan two workers are commanded to scout; however, as the plan
advances the planner decides that it is more profitable to use them for mining than scouting
so new soldiers can be produced and used for attacking and defending, which is actually a
very coherent decision. Besides, this way of using the soldiers leads to what probably is
the most important fact in the plan: the planner uses all the available resources (100
minerals from the initial state and 150 additional minerals from mining) to produce new
soldiers, which means that it really plans ahead and tries to get the most out of the

resources, be it units or minerals, it has at its disposal. This is exactly the behavior that was

111

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

expected to get when the design was done, so the plans generated using the appropriate

parameters are arguably quite good.

Apart from the quality of the plan, the other factor that determines its usability is the time
needed to compute it. In this case a total of 13288 states were evaluated, taking 11.45
seconds. This result is not as good as the quality as in 12 seconds the state of the game can
change very much depending on how fast-paced the RTS game is. In particular, the pace of
the game 3 in ORTS is not very fast, but more than 10 seconds may be on the verge of
being unusable. It should be noted that this particular problem was parametrized looking
for quality over performance (by using best first instead of enforced hill climbing, for
example), so this result could be improved to make the problem more manageable at the
cost of losing quality. Besides, the machine used to the experimentations was not
exclusively used by the planner and it is not at all among the most potent computers that
are found nowadays in the market, so having at the computer player's disposal a more

capable machine would greatly reduce the time needed.

112

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

7. CONCLUSIONS

After describing all the design and the experimentation some comments are done herein. The
first important thing that must be noted is the complexity of the problem. In sections 2.1.2 and
2.1.3 a notion of how difficult the problem was given by studying the research done in the
field and the challenges RTS games pose to Al researchers. Indeed, the definition of the
domain was far from being an easy task. First of all, the abstraction of the problem went
through a number of phases in which an equilibrium between performance and
representativity had to be kept, something that was very difficult due to the many different
types of objects participating in the problem and the need of keeping the domain simple
enough for problems to be solved quickly and accurately. There were some implementations
that proved to be very useful: for instance, taking advantage of the fact that the effectiveness
of gathering resources depended on the distance between control centers and minerals,
minerals were taken away by assigning the operator MINE to control centers instead of
minerals (which is the most natural approach) avoiding to represent the large number clusters
of minerals that can be present in the domain. However, many of the problems came when,
after deciding on a way of simplifying the domain, the experimentation proved that there were
limitations either in usability or in complexity of the problem. A notable example can be the
limitations of PDDL 2.1 in representing sets of equivalent objects, which is traditionally
solved by adding individual objects instead of using some kind of numerical value with the
drawback of increasing the possible combinations of operators and parameters when using
those objects. In this case, after realizing that one of the causes of the low performance in the
first specifications was this, object reutilization was implemented and tested along with other
possible solutions, proving that it was a valid alternative to using sets of objects and therefore
confirming its utility not only for this particular problem but for any other of similar
characteristics, as this is a known and commonly encountered issue when using PDDL 2.1
Nevertheless, the challenges that the definition of the problem posed led to having many
parameters which must be appropriately initialized for the problem to be solved respecting the
time constraints that RTS games impose to computer players.

A significant fact that marked the process of design of the planning domain was the definition
of goals. Classical problems usually have a well-defined goal which can be easily defined in
the domain specification. However, RTS games are too complex for their winning condition
to be used as a goal and so require using more cunning alternatives. In the approach of this

work, continuous replanning was a staple of the design, so the goals were not long-term goals

113

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

which try to fulfill the winning condition but rather goals that could force the planner to come
up with strategies involving several steps in time that could give an advantage to the player.
Therefore, the problem was not a satisfiability problem but an optimization one, in which the
utility of the plan should be maximized. The usefulness of the plan depended on how the units
were used to complete certain tasks necessary in every RTS game, and to represent this a set
of behaviors that lead to fulfilling a given role in the accomplishment of the plan was
implemented. There are two key factors in this approach: first, the fact that the different tasks
are often mutually exclusive as they need resources that are limited in number, and second,
the way of establishing a degree of usefulness for employing units to perform the different
tasks. To include in the implementation these two facts tasks were represented as soft goals
that granted rewards when achieved. Here we had to deal with the particularities of automated
planning, as plans are sequences of actions whose steps are evaluated and chosen as the nodes
are expanded, something that opposes to the fact that the usefulness of achieving certain goals
depended on the resources dedicated to them, both in number and in characteristics. Again,
the solution was using relatively complex numerical functions in which rewards were
dynamically assigned to units performing the tasks and costs were calculated and subtracted
from the utility of the action depending on several characteristics of the unit being used,
which ended up defining the value to maximize as rewards minus costs, or rather to minimize
as an initial value minus the rewards plus the costs. This was a positive choice as high quality
plans were obtained in the results but not only in terms of rewards, as they were coherent
plans a human player could have used to try to win the game.

Another problem related to automated planning was how poorly state of the art planners
manage non-monotonic metrics. As RTS games are complex environments, the values to
optimize in the domain definition are completely dynamical, meaning in terms of planning
that they are state dependent and change throughout the plan. This is a situation that modern
planners cannot deal with, yet it is probably the most important factor when determining plan
quality in the domain definition due to the system of dynamically assigned rewards and goals.
Again and to overcome this the approach was converting the metric to calls to a dummy
operator so the planner optimizes the plan length instead of a numerical value. This solution,
though simple, worked very well in many cases and can be easily used in a domain definition
or directly implemented in a planner, setting one of the few possible approaches to optimizing
heterogeneously modified values.

All in all, a broad range of innovative techniques were used which succeeded to solve a

problem of high complexity as a RTS game and which had never been faced using automated

114

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

planning. Besides, the objectives of keeping the solution independent from the planner and
applicable to other problems were satisfied, which means that the conclusions of this work
will be useful not only in gaming but also in many other environments of similar

characteristics.

115

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

8. FUTURE WORK

Initially, this work originated from the idea of implementing a client to play in the third
domain of the ORTS competition using automated planning. However, due to the multiple
challenges the definition of the domain posed, the scope was changed to a more theoretical
one dealing with all the issues that solving a complex problem like this one using automated
planning had. The goals of this thesis have been achieved; hence, the next step would be
taking all this work to a more practical plane and finally creating the client to participate in
the competition implementing the architecture of the planner, the behaviors of the units, etc...

so the real efficiency of the techniques used in the domain could be tested.

Apart from that, our intent of using standard languages and techniques opens two important
paths for research: first, all the techniques used in the definition can be tested with any other
planner that supports PDDL 2.1 or even implemented in the planner in order to increase their
effectiveness and to avoid having to define them in the domain. This could have as
consequence both using problems similar to the ones characteristic from RTS games as
benchmarks or testbeds for state of the art planners and opening new trends in research
intending to solve issues like the impossibility of optimizing non-monotonic values in
planning problems; second, because the techniques are not problem dependent, they could be
used as well in similar situations like military simulations or complex multi-agent

environments, proving that their usefulness goes beyond the field of gaming.

116

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

BIBLIOGRAPHY

e [Aha, Molineaux and Ponsen, 05] Learning to win: Case-based plan selection in a real-
time strategy game. Proceedings of the Sixth International Conference on Case-Based
Reasoning (pp. 5-20). Chicago, IL: Springer

e [Blum and Furst, 1997] A. L. Blum and M. L. Furst. Fast planning through planning
graph analysis. Artificial Intelligence, 90(1-2):281-300, 1997.

e [Buro, 02] M. Buro, ORTS: A Hack-Free RTS Game Environment, Proceedings of the
International Computers and Games Conference 2002, Edmonton, Canada

e [Chan et al., 07] Extending Online Planning for Resource Production in Real-Time
Strategy Games with Search, workshop “Planning in Games” - ICAPS 2007, Rhode
Island, September 2007

e [Computer chess] Article in Wikipedia: http://en.wikipedia.org/wiki/Computer chess

e [Ernstetal., 1969] G. Ernst, A. Newell, and H. Simon. GPS: A Case Study in
Generality and Problem Solving. Academic Press, 1969.

e [Fikes and Nilsson, 1971] R. E. Fikes and N. J. Nilsson. STRIPS: a new approach to
the application of theorem proving to problem solving. Artificial Intelligence,
2(2-3):189-208, 1971.

e [GPL] General Public License, http://www.gnu.org/licenses/gpl.html

e [Green, 1969] C. Green. Application of theorem-proving to problem solving. In D. E.
Walker and L. M. Norton, editors, Proceedings of the 1st International Joint
Conference on Artificial Intelligence, pages 219-239. William Kaufmann, 1969.

e [Hartetal, 1968] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the
heuristic determination of minimum-cost paths. IEEE Transactions on System
Sciences and Cybernetics, SSC-4(2):100-107, 1968.

e [Helemrt, 2002] Helmert, M. (2002). Decidability and undecidability results for
planning with numerical state variables. In Proceedings of AIPS-02.

e [Hoffmann, 2002] J. Hoffmann, The Metric-FF Planning System: Translating
““Ignoring Delete Lists" to Numeric State Variables, Journal of Artificial Intelligence
Research, special issue on the 3rd International Planning Competition

e [IPC 2002] Results on the 2002 International Planning Competition,
http://planning.cis.strath.ac.uk/competition/results.html

e [Kautz and Selman, 1992] H. Kautz and B. Selman. Planning as satisfiability. In B.
Neumann, editor, Proceedings of the 10th European Conference on Artificial
Intelligence, pages 359-363. John Wiley & Sons, 1992.

117

http://en.wikipedia.org/wiki/Computer_chess
http://planning.cis.strath.ac.uk/competition/results.html
http://www.gnu.org/licenses/gpl.html

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

[King, Atkin and Westbrook, 02] Tapir: the Evolution of an Agent Control Language,
In Proceedings of the First International Joint Conference on Autonomous Agents and
Multi-Agent Systems, Bologna, Italy

[Korf, 1985] R. E. Korf. Depth-first iterative deepening: an optimal admissible tree
search. Artificial Intelligence, 27(1):97-109, 1985.

[McDermott, 98] McDermott, D. the AIPS-98 Planning Competition Committee 1998:
PDDL-the planning domain definition language http://www.cs.yale.edu/homes/dvm

[Metric-FF] Metric-FF's official web page http://members.deri.at/~joergh/metric-
ff.html

[Nau et al., 1999] Nau, D., Cao, Y., Lotem, A., & Muiioz-Avila, H. (1999). SHOP:
Simple hierarchical ordered planner. In Proceedings of IJCAI’99.

[Orkin, 2006] Three States and a Plan: The A.L. of F.E.A.R.. 4. Game Developers
Conference 2006

[ORTS Competition 2008] ORTS competition 2008
http://www.cs.ualberta.ca/~mburo/orts/AIIDEO8/

[ORTS snapshot] ORTS daily development snapshot
http://www.cs.ualberta.ca/~mburo/orts/src _snapshot/snap.html

[Pearl, 1984] J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Addison-Wesley Publishing Company, Reading, Massachusetts, 1984.
[Pednault, 1989] Pednault, E. (1989). ADL: Exploring the middle ground between
STRIPS and the situation calculus. In Proceedings of KR-89, pp. 324-332.
[Rosenschein, 1981] S. J. Rosenschein. Plan synthesis: A logical perspective. In P. J.
Hayes, editor, Proceedings of the 7th International Joint Conference on Artificial
Intelligence, pages 331-337. William Kaufmann, August 1981.

[Sacerdoti, 1974] E. D. Sacerdoti. Planning in a hierarchy of abstraction spaces.
Artificial Intelligence, 5:115-135, 1974.

[Sacerdoti, 1975] E. D. Sacerdoti. The nonlinear nature of plans. In Proceedings of the
4th International Joint Conference on Artificial Intelligence, pages 206-214, 1975.
[Schaeffer et al. 317] Checkers Is Solved :Jonathan Schaeffer, Neil Burch, Yngvi
Bjornsson, Akihiro Kishimoto, Martin Miiller, Robert Lake, Paul Lu, Steve Sutphen,
Science 14 September 2007, Vol. 317. no. 5844, pp. 1518 — 1522, DOLI:
10.1126/science.1144079

[Starcraft competitions] Bloomberg News, last updated in January 15, 2006
http://www.bloomberg.com/apps/news?pid=email us&refer=asia&sid=a2JvzciDnpB4

[Stratagus] Stratagus web page http://www.stratagus.org

118

http://www.stratagus.org/
http://www.bloomberg.com/apps/news?pid=email_us&refer=asia&sid=a2JvzciDnpB4
http://www.cs.ualberta.ca/~mburo/orts/src_snapshot/snap.html
http://www.cs.ualberta.ca/~mburo/orts/AIIDE08/
http://members.deri.at/~joergh/metric-ff.html
http://members.deri.at/~joergh/metric-ff.html
http://www.cs.yale.edu/homes/dvm

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

ANNEX A: Game 3 Blueprint

$Id: game3.bp 2597 2007-05-25 23:54:20Z orts furtak $

4.
Ir

<DEFINE>
fixed constants

TP 16 # TILE POINTS; see GameConst.H
FPS 8 # simulation frames per second

game constants

GAME TIME (20*60*FPS) # in simulation frames

NUM_WORKERS 6 # initially

CURRENT_SUPPLY 300

MAX SUPPLY 300 # currently not enforced

MINERALS 600 # at start

Damage is calculated as follows: Damage = Rolled Attack Value - Target
Armor

BUILDING ARMOR 2

control center stats

CONTROL_COST 600

CONTROL_HP 1700
CONTROL_SIGHT 4 # in tiles
CONTROL_WIDTH (4*TP-2) # in TP

CONTROL_HEIGHT (4*TP-2) # in TP
CONTROL _BUILDTIME (38*FPS) # seconds

barrack stats

BARRACKS COST 400
BARRACKS HP 1150
BARRACKS SIGHT 4
BARRACKS WIDTH (4*TP-2)

BARRACKS HEIGHT (3*TP-2)

119

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

BARRACKS BUILDTIME (25*FPS)

factory stats

FACTORY_COST
FACTORY_HP
FACTORY_SIGHT
FACTORY_WIDTH
FACTORY HEIGHT

400

1400

4
(4*TP-2)
(3*TP-2)

FACTORY BUILDTIME (25*FPS) # seconds

worker stats

WORKER_DMG1
WORKER DMG2
WORKER RANGE
WORKER COOL
WORKER_COST
WORKER_HP
WORKER SIGHT
WORKER_RADIUS
WORKER_SPEED
WORKER BUILDTIME
WORKER_SUPPLY
WORKER BONUS

marine stats

HOH OH OH R H

MARINE DMG1
MARINE DMG2
MARINE ARMOR
MARINE RANGE
MARINE COOL
MARINE COST
MARINE HP
MARINE SIGHT
MARINE RADIUS
MARINE SPEED
MARINE BUILDTIME
MARINE SUPPLY

4
6
(TP/4)
(1*FPS)
50

60

attack value uniformly
distributed in [DMG1,DMG2]
in TP

seconds

H H B H

HH*

in TP
TP/ frame

(7*FPS) # was 160

O R -5 W
H*

not used

marine hp lowered slightly

damage set to constant for easy testing(may be randomized again later)
cooldown lengthened to be more visibly obvious

build time doubled as it seemed too fast before

marine cost lowered

[NENE) |

(4*TP)

(1*FPS)

50

40

7

4

3
(8*FPS) # was 192

1

120

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

MARINE_ BONUS 0 # not used

tank stats

tank hp lowered significantly for balance with respect to marines
damage set to constant for easy testing(may be randomized again later)
cooldown scaled with respect to marine cooldown

build time scaled with respect to marine build time
tank cost lowered to reflect changes in stats

tank armor meant to balance marine cost efficiency
TANK DMG1 26

TANK _DMG2 34

TANK DMG3 0 # not used

TANK DMG4 0 # not used

TANK _ARMOR 1

TANK _COOL ((1lo*FPS)/4) # 2.5 sec

TANK _COOL2 0 # not used

TANK COST 200

TANK_HP 150

TANK_RANGE (7*TP)

TANK RANGE1 (2*TP) # minimum when anchored
TANK _RANGE2 (7*TP) # not used

TANK_SPLASH 5 # not used

TANK_SPLASH2 15 # not used

TANK SIGHT 10

TANK RADIUS 7

TANK_SPEED 3

TANK BUILDTIME (16*FPS) # was 400

TANK_SUPPLY 2

TANK BONUS 0 # not used
TANK _SWITCH TIME (3*FPS)

</DEFINE>

<INCLUDE>

"main.bp"
"common/scorekeeper.bp"
"common/common. bp"
"common/units.bp"
"common/player.bp"
"common/shepherd.bp"
</INCLUDE>

121

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

4.
It

<BLUEPRINTS>

<INCLUDE>
"terrans/weapons.bp"
"terrans/armor.bp"
"terrans/tools.bp"
"terrans/units.bp"
</INCLUDE>

blueprint start loc

var x 0
var y 0
var owner 0

The constructor is called at object creation -- since the start loc
has X,y coordinates defined in the world string, they won't be
set when the constructor is called.

Therefore, 'place' is called to initialize the start location at
time 0.

constructor init(;;) {
this.place() in 0;
}

action place(;;) {
gob unit;
gob building;
int 1i;

building = create("controlCenter", this.owner);

building.x = this.x;

building.y = this.y;

update the location of the object -- this takes care of updating
motion sectors so that collision testing is accurate when adding
the workers.

position(building);

for (i=0; i<NUM WORKERS; i+=1) {
unit = create("worker", this.owner);

122

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

close to(building, unit; TP/4);
position(unit);
}
}

end

.
H+ —_—— —_——— —_——
ki

blueprint timer

var timeout GAME TIME # maximum number of simulation cycles
var owner 0

constructor init(;;) {
this.check() in 1;
}

action check(;;) {
int i,j;
int score;
int best score, winner;

if (this.owner) break;

i = tick();

if (i >= this.timeout) {
shared.sk.print(); # print out game stats
winner = -1;

best score = -1000000;

j = shared.sk.units trained.size() - 1; # number of players
for (i=0; i<j; i+=1) {

score = (shared.sk.mineral count[i]/2) +
(shared.sk.standing cost[i]) +
(shared.sk.destruct cost[i]);

if (score > best score) {

best score = score;
winner = 1i;

123

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

#specific for this 2 player setting
if (score == best score) {
winner = 99;

}

if (shared.sk.buildings lost[i] <= best bnum) {
if (shared.sk.buildings lost[i] < best bnum) {

best bnum = shared.sk.buildings lost[i];
best unum = shared.sk.units lost[i];
best time = shared.sk.time destroyed[i];
winner = 1i;

} else {

if (shared.sk.units lost[i] <= best unum) {

if (shared.sk.units lost[i] < best unum) {
best bnum shared.sk.buildings lost[i];
best unum = shared.sk.units lost[i];
best time = shared.sk.time destroyed[i];
winner = 1i;

} else {
if (shared.sk.time destroyed[i] < best time) {

best bnum = shared.sk.buildings lost[i];
best unum = shared.sk.units lost[i];
best time = shared.sk.time destroyed[i];
winner = i;
}
}
}

HOH OH OH H O H R HHOH H O HRHHEHHEHHHEHHHR

cout("\n@ TIME %d ", tick());
shared.sk.print(); # print out game stats

cout("\n");
for (i=0; i<j; i+=1) {
cout("p= %d : min= %d sta= %d des= %d tot= %d | ",
i,

shared.sk.mineral count[i],
shared.sk.standing cost[i],
shared.sk.destruct cost[i],
(shared.sk.mineral count[i]/2) +
(shared.sk.standing cost[i]) +
(shared.sk.destruct cost[il]));

HOH OH OH K K H R B H

124

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

cout("\n");

end game(winner);

}

early victory condition
specific to a 1lvl game

for(i=0; i<2; i+=1){
if (shared.sk.buildings alive[i] <= 0 && shared.sk.buildings lost[i]
> 0) {

winner = (i+l) % 2;

cout("\n@ EARLY %d ", tick());
shared.sk.print(); # print out game stats
cout("\n");

end game(winner);
}

}
this.check() in 1;

}

end

global objects

global timer score timer;
global shepherd bp shepherd;

4.
Ir

</BLUEPRINTS>

125

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

ANNEX B: Domain Definition

(define (domain game3)

(:requirements :adl)

(:types

)

position

object

ally - object

cc - ally

barracks - ally
unit - ally
worker - unit
soldier - unit
enemybase - object

(:predicates

)

(:functions

at ?object - object ?pos - position)
goal achieved)

unexplored ?pos - position)

ready ?ally - ally)

PR

(positionCost ?pos - position)
(posX ?pos - position)

(posY ?pos - position)
(accumulated-cost ?ally - ally)
(enemy-soldiers ?base)
(soldiers-assigned ?base)
(max-workers-to-mine ?cc - cc)
(pre-total-cost)

(total-cost)

(minerals)

(minerals-gathered)

(rewards)

(attack-reward ?enemybase - object)
(attack-reward-increase ?enemybase - object)
(attack-reward-decrease ?enemybase - object)
(defend-reward ?cc - cc)
(defend-reward-increase ?cc - cc)
(defend-reward-decrease ?cc - cc)
(rewards-threshold)

(cost-increment)

(scout-reward)

(scout-reward-decrease)

(harass-reward ?enemybase - object)
(harass-reward-decrease)

(worker-build-cost)

(soldier-build-cost)

126

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

)

(:action TO-END

:precondition (and
(> (rewards) (rewards-threshold))
(> (pre-total-cost) 0)

)

reffect (and
(decrease (pre-total-cost) (cost-increment))
(increase (total-cost) (cost-increment))

)

(:action END
:precondition (and
(> (rewards) (rewards-threshold))
(<= (pre-total-cost) 0)
)
reffect (goal achieved)

)

(raction ATTACK
:parameters (?soldier - soldier 7?enemybase - enemybase ?src -
position ?dest - position)
:precondition (and
(at ?enemybase ?dest)
(at ?soldier ?src)
)
reffect (and

(increase (pre-total-cost) (accumulated-cost ?
soldier))

(when (< (posX ?src) (posX ?dest)) (and (increase
(pre-total-cost) (- (posX ?dest) (posX ?src)))(increase (accumulated-cost ?
soldier) (- (posX ?dest) (posX ?src)))))

(when (> (posX ?src) (posX 7?dest)) (and (increase
(pre-total-cost) (- (posX ?src) (posX ?dest)))(increase (accumulated-cost ?
soldier) (- (posX ?src) (posX ?dest)))))

(when (< (posY 7?src) (posY 7?dest)) (and (increase
(pre-total-cost) (- (posY ?dest) (posY ?src)))(increase (accumulated-cost ?
soldier) (- (posY ?dest) (posY ?src)))))

(when (> (posY 7?src) (posY ?dest)) (and (increase
(pre-total-cost) (- (posY ?src) (posY ?dest)))(increase (accumulated-cost ?
soldier) (- (posY ?src) (posY ?dest)))))

(when (< (positionCost 7?src) (positionCost ?dest))
(and (increase (pre-total-cost) (- (positionCost ?dest) (positionCost 7
src))) (increase (accumulated-cost ?soldier) (- (positionCost ?dest)
(positionCost ?src)))))

(not (at ?soldier 7?src))

(when (not(exists (?x - soldier)(ready ?x))) (ready
?soldier))

127

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

(when (> (enemy-soldiers ?enemybase) (soldiers-
assigned ?enemybase))
(and (increase (rewards) (attack-reward 7?
enemybase))
(decrease (pre-total-cost) (attack-
reward ?enemybase))
(increase (attack-reward ?7enemybase)
(attack-reward-increase ?enemybase))

)
)

(when (<= (enemy-soldiers ?enemybase) (soldiers-
assigned ?enemybase))
(and (increase (rewards) (attack-reward ?
enemybase))
(decrease (pre-total-cost) (attack-
reward ?enemybase))
(decrease (attack-reward 7enemybase)
(attack-reward-decrease ?enemybase))

)
)
(decrease (harass-reward ?enemybase) (harass-

reward-decrease))
(increase (soldiers-assigned ?enemybase) 1)

)

(:action DEFEND
:parameters (?soldier - soldier ?cc - cc ?src - position 7?dest
- position)
:precondition (and
(at ?cc ?dest)
(at ?soldier 7?src)
(> (enemy-soldiers ?cc) 0)
)
reffect (and

(increase (pre-total-cost) (accumulated-cost ?
soldier))

(when (< (posX ?src) (posX ?dest)) (and (increase
(pre-total-cost) (- (posX ?dest) (posX ?src)))(increase (accumulated-cost ?
soldier) (- (posX ?dest) (posX ?src)))))

(when (> (posX ?src) (posX 7?dest)) (and (increase
(pre-total-cost) (- (posX 7?src) (posX ?dest)))(increase (accumulated-cost ?
soldier) (- (posX ?src) (posX ?dest)))))

(when (< (posY 7?src) (posY ?dest)) (and (increase
(pre-total-cost) (- (posY ?dest) (posY ?src)))(increase (accumulated-cost ?
soldier) (- (posY ?dest) (posY ?src)))))

(when (> (posY 7?src) (posY ?dest)) (and (increase
(pre-total-cost) (- (posY 7?src) (posY ?dest)))(increase (accumulated-cost ?
soldier) (- (posY 7?src) (posY ?dest)))))

(when (< (positionCost 7?src) (positionCost ?dest))

128

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

(and (increase (pre-total-cost) (- (positionCost 7?dest) (positionCost ?
src))) (increase (accumulated-cost ?soldier) (- (positionCost 7?dest)
(positionCost ?src)))))

(not (at ?soldier 7?src))

(when (not(exists (?x - soldier)(ready ?7x))) (ready
?soldier))

(when (> (enemy-soldiers ?cc) (soldiers-assigned ?
cc))
(and (increase (rewards) (defend-reward ?
cc))
(decrease (pre-total-cost) (defend-
reward ?cc))
(increase (defend-reward 7?cc) (defend-
reward-increase 7cc))

)

(when (<= (enemy-soldiers ?cc) (soldiers-assigned ?
cc))
(and (increase (rewards) (defend-reward ?
cc))
(decrease (pre-total-cost) (defend-
reward ?cc))
(decrease (defend-reward ?cc) (defend-
reward-decrease 7?7cc))

)

(increase (soldiers-assigned ?cc) 1)

(:action HARASS
:parameters (?soldier - soldier 7?enemybase - enemybase ?src -
position ?dest - position)
:precondition (and
(at ?enemybase ?dest)
(at ?soldier ?src)
)
reffect (and

(increase (pre-total-cost) (accumulated-cost ?
soldier))

(when (< (posX ?src) (posX ?dest)) (and (increase
(pre-total-cost) (- (posX ?dest) (posX ?src)))(increase (accumulated-cost ?
soldier) (- (posX ?dest) (posX ?src)))))

(when (> (posX 7?src) (posX ?dest)) (and (increase
(pre-total-cost) (- (posX ?src) (posX ?dest)))(increase (accumulated-cost ?

129

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

soldier) (- (posX ?src) (posX ?dest)))))

(when (< (posY 7?src) (posY ?dest)) (and (increase
(pre-total-cost) (- (posY ?dest) (posY ?src)))(increase (accumulated-cost ?
soldier) (- (posY ?dest) (posY ?src)))))

(when (> (posY 7?src) (posY ?dest)) (and (increase
(pre-total-cost) (- (posY ?src) (posY ?dest)))(increase (accumulated-cost ?
soldier) (- (posY 7?src) (posY ?dest)))))

(when (< (positionCost 7?src) (positionCost ?dest))
(and (increase (pre-total-cost) (- (positionCost ?dest) (positionCost 7
src))) (increase (accumulated-cost ?soldier) (- (positionCost 7?dest)
(positionCost ?src)))))

(not (at ?soldier 7?src))

(when (not(exists (?x - soldier)(ready ?x))) (ready
?soldier))

(increase (rewards) (harass-reward ?enemybase))

(decrease (pre-total-cost) (harass-reward ?
enemybase))

(decrease (harass-reward ?enemybase) (harass-
reward-decrease))

)
)

(:action SCOUT
:parameters (?worker - worker ?src - position ?dest - position)
:precondition (and
(unexplored ?dest)
(at ?worker ?src)
)
:effect (and

(not (unexplored ?dest))

(increase (pre-total-cost) (accumulated-cost ?
worker))

(when (< (posX ?src) (posX ?dest)) (and (increase
(pre-total-cost) (- (posX ?dest) (posX ?src)))(increase (accumulated-cost ?
worker) (- (posX ?dest) (posX ?src)))))

(when (> (posX 7?src) (posX ?dest)) (and (increase
(pre-total-cost) (- (posX ?src) (posX ?dest)))(increase (accumulated-cost ?
worker) (- (posX ?src) (posX ?dest)))))

(when (< (posY ?src) (posY 7?dest)) (and (increase
(pre-total-cost) (- (posY ?dest) (posY ?src)))(increase (accumulated-cost ?
worker) (- (posY ?dest) (posY ?src)))))

(when (> (posY 7?src) (posY ?dest)) (and (increase
(pre-total-cost) (- (posY ?src) (posY ?dest)))(increase (accumulated-cost ?
worker) (- (posY ?src) (posY ?dest)))))

(when (< (positionCost 7?src) (positionCost ?dest))
(and (increase (pre-total-cost) (- (positionCost 7?dest) (positionCost ~?
src))) (increase (accumulated-cost ?worker) (- (positionCost 7?dest)
(positionCost ?src)))))

130

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

(not (at ?worker ?src))

(when (not(exists (?x - worker)(ready 7x)))
(ready ?worker))

(increase (rewards) (scout-reward))
(decrease (pre-total-cost) (scout-reward))
(decrease (scout-reward) (scout-reward-decrease))

)

(:action MINE
:parameters (?worker - worker ?cc - cc ?src - position ?dest -
position)
:precondition (and
(at ?worker ?src)
(at ?cc ?dest)
(> (max-workers-to-mine ?cc) 0)
)
reffect (and
(not (at ?worker ?src))

(when (not(exists (?x - worker)(ready ?x)))
(ready ?worker))

(decrease (max-workers-to-mine ?cc) 1)
(increase (minerals) (- (minerals-gathered)
(accumulated-cost ?worker)))

)
)

(:action BUILDWORKER
:parameters (?cc - cc ?position - position ?worker - worker)
:precondition (and
(ready ?worker)
(>= (minerals) 50)
(at ?cc ?position)

reffect (and
(increase (accumulated-cost ?cc) (worker-build-
cost))
(assign (accumulated-cost ?worker) (accumulated-
cost ?cc))

(at ?worker ?position)
(decrease (minerals) 50)
(not (ready ?worker))

)
(:action BUILDSOLDIER

:parameters (?barracks - barracks ?position - position ?soldier
- soldier)

131

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

:precondition (and
(at ?barracks ?position)
(>= (minerals) 50)
(ready 7?7soldier)
)
:effect (and
(increase (accumulated-cost “?barracks) (soldier-
build-cost))
(assign (accumulated-cost 7?soldier) (accumulated-
cost ?barracks))
(at ?soldier ?position)
(decrease (minerals) 50)
(not (ready ?soldier))

)

(:action BUILDBARRACKS
:parameters (?barracks - barracks ?position - position ?worker
- worker)
:precondition (and
(>= (minerals) 400)
(at ?worker ?position)
(ready 7?barracks)

and

at ?barracks ?position)
decrease (minerals) 400)
not (ready ?barracks))

reffect

—~ o~~~

132

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

ANNEX C: Problem Definition

(define (problem game3-problem)
(:domain game3)

(:objects

pos@-0 - position
posO-1 - position
pos0@-2 - position
pos0-3 - position
pos0@-4 - position
pos0-5 - position
pos@-6 - position
pos@-7 - position
posl-0 - position
posl-1 - position
posl-2 - position
posl-3 - position
posl-4 - position
posl-5 - position
posl-6 - position
posl-7 - position
pos2-0 - position
pos2-1 - position
pos2-2 - position
pos2-3 - position
pos2-4 - position
pos2-5 - position
pos2-6 - position
pos2-7 - position
pos3-0 - position
pos3-1 - position
pos3-2 - position
pos3-3 - position
pos3-4 - position
pos3-5 - position
pos3-6 - position
pos3-7 - position
pos4-0 - position
pos4-1 - position
pos4-2 - position
pos4-3 - position
pos4-4 - position
pos4-5 - position
pos4-6 - position
pos4-7 - position
pos5-0 - position
pos5-1 - position
pos5-2 - position
pos5-3 - position

133

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

pos5-4 - position
pos5-5 - position
pos5-6 - position
pos5-7 - position
pos6-0 - position
pos6-1 - position
pos6-2 - position
pos6-3 - position
pos6-4 - position
pos6-5 - position
pos6-6 - position
pos6-7 - position
pos7-0 - position
pos7-1 - position
pos7-2 - position
pos7-3 - position
pos7-4 - position
pos7-5 - position
pos7-6 - position
pos7-7 - position
enemybase® - enemybase
enemybasel - enemybase
soldier® - soldier
soldierl - soldier
soldier2 - soldier
soldier3 - soldier
soldier4 - soldier
soldier5 - soldier
soldier6t - soldier
soldier7 - soldier
soldier8 - soldier
soldier9 - soldier
worker@ - worker
workerl - worker
worker2 - worker
worker3 - worker
workerd - worker
barracks® - barracks
barracksl - barracks
barracks2 - barracks

ccO - cc
ccl - cc
cc2 - cc
) (:init

—_

(posX pos0-0) 0)
(posY pos0-0) 0)
(positionCost pos0-0) 32)
(posX pos0-1) 0)
(posY pos0-1) 1)
(positionCost pos0-1) 30)
(posX pos0-2) 0)
(posY pos0-2) 2)
(positionCost pos0-2) 386)
(posX pos0-3) 0)

e e e e e e e)

134

Modelling a RTS Planning Domain with Cost Conversion and Rewards

(= (posY pos0-3) 3)
(= (positionCost pos0-3) 736)
(= (posX pos0-4) 0)
(= (posY pos0-4) 4)
(= (positionCost pos0-4) 160)
= (posX pos0-5) 0)
(posY pos0-5) 5)
(positionCost pos0-5) 124)
(posX pos0-6) 0)
(posY pos0-6) 6)
(positionCost pos0-6) 124)
(posX pos0-7) 0)
(posY pos0-7) 7)
(positionCost pos0-7) 287)
(posX posl-0) 1)
(posY posl-0) 0)
(positionCost posl-0) 32)
(posX posl-1) 1)
(posY posl-1) 1)
(positionCost posl-1) 30)
(posX posl-2) 1)
(posY posl-2) 2)
(positionCost posl-2) 136)
(posX posl-3) 1)
(posY posl-3) 3)
(positionCost posl-3) 148)
(posX posl-4) 1)
(posY posl-4) 4)
(positionCost posl-4) 119)
(posX posl-5) 1)
(posY posl-5) 5)
(positionCost posl-5) 282)
(posX posl-6) 1)
(posY posl-6) 6)
(positionCost posl-6) 412)
(posX posl-7) 1)
(posY posl-7) 7)
(positionCost posl-7) 412)
(posX pos2-0) 2)
(posY pos2-0) 0)
(positionCost pos2-0) 25)
(posX pos2-1) 2)
(posY pos2-1) 1)
(positionCost pos2-1) 27)
(posX pos2-2) 2)
(posY pos2-2) 2)
(positionCost pos2-2) 24)
(posX pos2-3) 2)
(posY pos2-3) 3)
(positionCost pos2-3) 61)
(posX pos2-4) 2)
(posY pos2-4) 4)
(positionCost pos2-4) 132)
(posX pos2-5) 2)

_—~ o~
1

B o e e e e s e e e e e e
L | 1 | ¥ | | | | | | | | | B

Vidal Alcazar Saiz

135

Modelling a RTS Planning Domain with Cost Conversion and Rewards

(= (posY pos2-5) 5)
(= (positionCost pos2-5) 586)
(= (posX pos2-6) 2)
(= (posY pos2-6) 6)
(= (positionCost pos2-6) 711)
= (posX pos2-7) 2)
(posY pos2-7) 7)
(positionCost pos2-7) 611)
(posX pos3-0) 3)
(posY pos3-0) 0)
(positionCost pos3-0) 20)
(posX pos3-1) 3)
(posY pos3-1) 1)
(positionCost pos3-1) 15)
(posX pos3-2) 3)
(posY pos3-2) 2)
(positionCost pos3-2) 12)
(posX pos3-3) 3)
(posY pos3-3) 3)
(positionCost pos3-3) 49)
(posX pos3-4) 3)
(posY pos3-4) 4)
(positionCost pos3-4) 86)
(posX pos3-5) 3)
(posY pos3-5) 5)
(positionCost pos3-5) 411)
(posX pos3-6) 3)
(posY pos3-6) 6)
(positionCost pos3-6) 611)
(posX pos3-7) 3)
(posY pos3-7) 7)
(positionCost pos3-7) 611)
(posX pos4-0) 4)
(posY pos4-0) 0)
(positionCost pos4-0) 45)
(posX pos4-1) 4)
(posY pos4-1) 1)
(positionCost pos4-1) 25)
(posX pos4-2) 4)
(posY pos4-2) 2)
(positionCost pos4-2) 12)
(posX pos4-3) 4)
(posY pos4-3) 3)
(positionCost pos4-3) 49)
(posX pos4-4) 4)
(posY pos4-4) 4)
(positionCost pos4-4) 91)
(posX pos4-5) 4)
(posY pos4-5) 5)
(positionCost pos4-5) 411)
(posX pos4-6) 4)
(posY pos4-6) 6)
(positionCost pos4-6) 611)
(posX pos4-7) 4)

_—~ o~
1

B o e e e e s e e e e e e
L | 1 | ¥ | | | | | | | | | B

Vidal Alcazar Saiz

136

Modelling a RTS Planning Domain with Cost Conversion and Rewards

(= (posY pos4-7) 7)
(= (positionCost pos4-7) 611)
(= (posX pos5-0) 5)
(= (posY pos5-0) 0)
(= (positionCost pos5-0) 200)
= (posX pos5-1) 5)
(posY pos5-1) 1)
(positionCost pos5-1) 25)
(posX pos5-2) 5)
(posY pos5-2) 2)
(positionCost pos5-2) 12)
(posX pos5-3) 5)
(posY pos5-3) 3)
(positionCost pos5-3) 17)
(posX pos5-4) 5)
(posY pos5-4) 4)
(positionCost pos5-4) 54)
(posX pos5-5) 5)
(posY pos5-5) 5)
(positionCost pos5-5) 59)
(posX pos5-6) 5)
(posY pos5-6) 6)
(positionCost pos5-6) 116)
(posX pos5-7) 5)
(posY pos5-7) 7)
(positionCost pos5-7) 191)
(posX pos6-0) 6)
(posY pos6-0) 0)
(positionCost pos6-0) 200)
(posX pos6-1) 6)
(posY pos6-1) 1)
(positionCost pos6-1) 25)
(posX pos6-2) 6)
(posY pos6-2) 2)
(positionCost pos6-2) 12)
(posX pos6-3) 6)
(posY pos6-3) 3)
(positionCost pos6-3) 25)
(posX pos6-4) 6)
(posY pos6-4) 4)
(positionCost pos6-4) 76)
(posX pos6-5) 6)
(posY pos6-5) 5)
(positionCost pos6-5) 10)
(posX pos6-6) 6)
(posY pos6-6) 6)
(positionCost pos6-6) 85)
(posX pos6-7) 6)
(posY pos6-7) 7)
(positionCost pos6-7) 520)
(posX pos7-0) 7)
(posY pos7-0) 0)
(positionCost pos7-0) 35)
(posX pos7-1) 7)

_—~ o~
1

B o e e e e s e e e e e e
L | 1 | ¥ | | | | | | | | | B

Vidal Alcazar Saiz

137

Modelling a RTS Planning Domain with Cost Conversion and Rewards

(posY pos7-1) 1)
(positionCost pos7-1) 75)
(posX pos7-2) 7)
(posY pos7-2) 2)
(positionCost pos7-2) 200)
(posX pos7-3) 7)
(posY pos7-3) 3)
(positionCost pos7-3) 345)
(posX pos7-4) 7)
(posY pos7-4) 4)
(positionCost pos7-4) 178)
(posX pos7-5) 7)
(posY pos7-5) 5)
(positionCost pos7-5) 214)
(posX pos7-6) 7)
(posY pos7-6) 6)
(positionCost pos7-6) 54)
(posX pos7-7) 7)
(posY pos7-7) 7)
(positionCost pos7-7) 56)

e e e e R e e e e e e e e e e e e e e

= (pre-total-cost) 2700)

= (total-cost) 0)

= (minerals) 100)

= (minerals-gathered) 50)
(rewards) 0)

(scout-reward) 90)
(scout-reward-decrease) 30)
(harass-reward-decrease) 25)
(cost-increment) 15)
(rewards-threshold) 0)
(worker-build-cost) 10)
(soldier-build-cost) 10)

e e e e e e e e e e)

(defend-reward cc@) 100)
(defend-reward-increase cc0) 20)
(defend-reward-decrease cc0) 40)
(enemy-soldiers cc0O) 5)
(soldiers-assigned cc0Q) 0)
(max-workers-to-mine ccQ) 50)

P P~~~
LI | | | R R [}

(defend-reward ccl) 100)
(defend-reward-increase ccl) 100)
(defend-reward-decrease ccl) 200)
(enemy-soldiers ccl) 1)
(soldiers-assigned ccl) 0)
(max-workers-to-mine ccl) 5)

(defend-reward cc2) 100)
(defend-reward-increase cc2) 15)
(defend-reward-decrease cc2) 30)
(enemy-soldiers cc2) 7)
(soldiers-assigned cc2) 0)
(max-workers-to-mine cc2) 5)

—_————~
LI | | T A [

Vidal Alcazar Saiz

138

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

(attack-reward enemybase0) 150)
(harass-reward enemybase0) 200)
(attack-reward-increase enemybase@) 25)
(attack-reward-decrease enemybase@) 50)
(enemy-soldiers enemybase0) 6)
(soldiers-assigned enemybaseQ) 0)

—_~—~——— —~
LI | | | R | A [}

(attack-reward enemybasel) 150)
(harass-reward enemybasel) 200)
(attack-reward-increase enemybasel) 15)
(attack-reward-decrease enemybasel) 30)
(enemy-soldiers enemybasel) 10)
(soldiers-assigned enemybasel) 0)

(at enemybase0 posl-1)
(at enemybasel pos6-0)
(at ccO pos4-2)

(at ccl pos3-3)

(at cc2 pos7-5)

(at barracks@ pos4-2)
(at worker0 pos4-2)
(at workerl pos5-4)
(at worker2 pos7-2)
(at worker3 pos4-6)
(at worker4 posl-1)
(at soldier® pos4-4)
(at soldierl pos7-2)
(at soldier2 pos6-5)
(at soldier3 posl-3)
(at soldier4 pos2-3)
(at soldier5 pos5-3)
(at soldier6 posl-7)
(at soldier7 pos3-2)
(at soldier8 pos4-1)
soldier9 pos4-2)

—_
o))
—+

(accumulated-cost worker0) 0
(accumulated-cost workerl) 0
(accumulated-cost worker2) 0
(accumulated-cost worker3) 0
(accumulated-cost worker4) 0
(accumulated-cost soldier0)
(accumulated-cost soldierl)
(accumulated-cost soldier2)
(accumulated-cost soldier3)
(accumulated-cost soldier4)
(accumulated-cost soldierb)
(accumulated-cost soldier6)
(accumulated-cost soldier7)
(accumulated-cost soldier8)
(accumulated-cost soldier9)
(accumulated-cost barracksO)
(accumulated-cost ccO) 10)

)
)
)
)
)
)
)
)
)
)
1

0)

e e e R R e e R e R e e e e e e

139

Modelling a RTS Planning Domain with Cost Conversion and Rewards Vidal Alcazar Saiz

(= (accumulated-cost ccl) 10)
(= (accumulated-cost cc2) 10)

(unexplored pos6-2)
(unexplored posl-2)
(unexplored pos4-3)
(unexplored pos6-3)
(unexplored pos7-2)
(unexplored pos3-2)
(unexplored pos2-7)

) (:goal (goal achieved))
(:metric minimize (total-cost)))

140

	1. INTRODUCTION
	2. STATE OF THE ART
	2.1 Real Time Strategy games
	2.1.1 Overview of Real Time Strategy games
	2.1.2 Artificial Intelligence in RTS games
	2.1.3 Challenges of RTS games

	2.2 ORTS
	2.2.1 Features of ORTS
	2.2.2 ORTS versus commercial RTS games
	2.2.3 Functioning of ORTS

	2.3 Automated Planning and PDDL
	2.3.1 Overview of Automated Planning
	2.3.2 Bases of Heuristic Planning
	2.3.3 PDDL 2.1

	3. OBJECTIVES
	4. DEFINITION IN PDDL AND CLIENT DESCRIPTION
	4.1 Problem description
	4.2 Client structure
	4.3 Domain definition
	4.3.1 Behaviors as unit consuming operators
	4.3.2 Intermediate operators
	4.3.3 Goal definition
	4.3.4 Costs
	4.3.5 Abstraction
	4.3.6 Object reutilization
	4.3.7 Problem definition

	5. USER'S MANUAL
	5.1 Using the planning domain
	5.2 Installing and using ORTS

	6. RESULTS
	6.1 Cost-to-operator conversion and metrics
	6.2 Problem complexity
	6.2.1 Initial value of pre-total-cost
	6.2.2 Number of units and other in-game parameters
	6.2.3 Improvements of object reutilization
	6.2.4 Parameters of the planner
	6.2.5 Practical utility of the plans

	7. CONCLUSIONS
	8. FUTURE WORK
	BIBLIOGRAPHY
	ANNEX A: Game 3 Blueprint
	ANNEX B: Domain Definition
	ANNEX C: Problem Definition

