A RTS domain definition in PDDL
for ORTS

Author: Vidal Alcazar Saiz
Tutors: Daniel Borrajo Millan, Carlos Linares Lopez



Introduction

Games have a very important role in Al research.
In particular, RTS games offer great possibilities.

ORTS is a programming environment that works
with RTS games for studying real-time Al
problems.

Strategies in RTS games as mid-term plans:

Automated Planning



RTS Games

Real Time Strategy games

One of the most popular genres in the game
industry

Millions of copies sold

International competitions with professional players
are frequently held

Fast-paced real time action

Multiple features appealing to both players and
researchers



Characteristics of RTS Games

Distinctly not turn based.
Resource gathering.
Multiple units and buildings.
Technology tree.

Tactical combat.

Incomplete information.



Example of RTS Game

Dune |l: Foundations
of the genre

Harvesters gather a
resource called spice

Mouse controlled cursor

Technology tree with
prerequisites

Fog of war

Interface with multiple
frames



Challenges of RTS Games

Real time reasoning

Complex worlds, generally grid-based
Uncertainty and incomplete information
Learning and oponent modelling

Multi-agent environment

Resource and technology management
Collaboration at unit level and between players



ORTS

Open Real Time Strategy

Conceived in 2001 by Michael Buro and
developed at the University of Alberta

Released under the GPL

Provides an environment for Al research in RTS
games similar to commercial ones

A competition with different domains is held
every year to encourage its use



Features of ORTS

Flexible game specification

ORTS is not a single RTS game, itis a RTS game
engine

Games are defined using a scripted language
Server-client architecture

Client customization

Clients are limited only by the communication
protocol

Low level Al modules



Al in RTS games (1)

Two contrary concepts: Macromanagement and
Micromanagement

Macromanagement: High level decisions, long term
Impact, humans are good at it (taking decisions as

attacking an enemy base, going up the technology

tree,...)

Micromanagement: Individual actions, short term
Impact, computers are good at it (issuing
commands like move and attack to control units,
gathering resources,...)



Al in RTS games (2)

Micromanagement is at unit level and relates to
tactical concepts

Reactive agents, pathfinding

Macromanagement is at a higher level and
relates to strategic concepts

Planning, learning, opponent modelling



Automated Planning

Decision making about the actions to be taken

Sequences of actions (called plans) are
followed to achieve a given goal

Requires the definition of the domain and the
problems
Domain: Types of objects, predicates and actions

Problem: Initial state and goal



PDDL 2.1

Planning Domain Definition Language

Standard of the International Planning
Competition

Based on STRIPS, Lisp-like syntax

PDDL 2.1 was the version used in the third IPC
held in 2002

Numeric values as attributes of objects
Time reasoning



Defining a domain so a planner can be used to
play RTS games

The problem to solve is the third domain of the
annual ORTS competition

The language to be used in the domain
specification is PDDL 2.1



Initial State

A control center, 6
workers and 600
starting minerals

A nearby mineral
patch

Start locations not
symmetric

Randomized terrain



Operators of the Domain

Operators correlate to complex actions in the
game.

Actions that may need an unknown amount of
time use up the unit (so it can not be used later
in the plan). These actions are: Attack, Defend,
Harass, Scout and Mine.

The other actions take a given amount of time
Known a priori. They are the actions that
produce new units and buildings.



Goal Definition (1)

There are several issues regarding this:

Making the goal match the winning condition is
unfeasible.

Replanning will happen often to adapt to the
dynamic environment.

Therefore, the goal will be getting a good
enough plan that contributes to gain an
advantage.



Goal Definition (2)

Actions that are useful grant rewards; that is, they are soft goals

Units have a cost associated to them depending on their

relative position and the tasks they have performed. This cost is
subtracted to the rewards.

Hence, the goal is maximizing rewards minus costs, or rather
minimizing a final cost qith an initial value after n actions:

totalCost =initialCost— ) (reward.—cost )
=1



Granting Rewards (1)

Complicated strategies require a given number of units

For example, when attacking an enemy base, the number of attacking
units should be the number of defending units plus a little value. Using
less units could result in a defeat and using more wastes units or
resouces that could be used for other tasks.

Rewards are granted every time the operator is used

Rewards for each unit depend on how many units perform the
same action

The planner does not know a priori how many units will be attacking!



Granting Rewards (2)

Solution: Using a gaussian function in which a is the maximum
reward a unit can get, b is the position of the maximum reward
(which should correspond to the number of enemy soldiers in
the opposing force plus a little value) and c the width of the

Gaussian bell:
Rewards
12
C
(x - b ) 10
> 8
2C 3
ac

4
2

0,, —
O 1 2 3 4 5 6 7 8 9 10 Soldiers



Minimizing the Total Cost (1)

Rewards and costs depend on the state throughout the plan

State-of-the-art planners can not minimize a non-monotonic
value

Solution: Converting the cost to calls to an auxiliary operator
after storing it in a temporal fluent called pre-total-cost and

using plan length.
(:action TO-END
:precondition (and (> (rewards) (rewards-threshold))
(> (pre-total-cost) 0) )
.effect (and (decrease (pre-total-cost) (cost-increment))

(increase (total-cost) (cost-increment)) ) )



Minimizing the Total Cost (2)

Once pre-total-cost is lesser than zero the execution is finshed
and the plan is an equivalent one with additional calls to the TO-
END operator. An example of a plan would be the following
one:

0: ATTACK SOLDIER2 ENEMYBASEO POS3-3 POS1-1
1: ATTACK SOLDIER1 ENEMYBASEO POS5-1 POS1-1
2: HARASS SOLDIERO ENEMYBASEO POS5-1 POS1-1
3: SCOUT WORKERO POS5-1 POS6-2

4: TO-END

5: TO-END

6: END



The plans obtained are coherent sequences of
actions that can be the base for the strategic
aspect of a computer player.

Plans are generated in a reasonable time, so
they are adequate for a real time environment.

Different planners can be used, and the values
of the parameters can be modified, so further
iImprovements may be possible.



Conclusions

The domain definition has proved to be a good
solution to a quite complex problem

Analysis of the different challenges that the problem
poses has lead to the implementation of independent
techniques not related between them

The proposed implementation only requires some
PDDL 2.1 features to be supported, so it can be used
by many planners and under different constraints



Future Work

The techniques are implemented in the definition, so it
could be interesting to integrate them in planners to
see the results

The problem has many points in common with many
other complex problems, so this work can be easily
extrapolated to other domains

Further work with RTS games is encouraged, being it
a good environment for Al research as shown by this
work

A client will be implemented for the 2008 ORTS
competition based on these ideas



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

