

Task Monitoring and Rescheduling for Opportunity and Failure Management

José Carlos González, Manuela Veloso,

Fernando Fernández and Ángel García-Olaya

Planning and Learning Group

Introduction – Tasks of service robots

- " Robot must find a valid task schedule, and execute it
- " Several constraints per task
- " Users can add tasks anytime

Subtasks: A, B

Subtasks: A, B

What to do now?

- " VIP first, then resume B
- " Redo A and B
- " VIP after B
- " Cancel A and B
- " Cancel VIP
- " Try a quick VIP

Opportunities and Failures

Opportunities and Failures

Current task

Opportunities:

Failures:

Constraints

Priority: 5

Next task

Opportunities:

Failures:

Constraints

Priority: 1

. . .

Contribution and Related work

Our contribution

- š Component to handle high-level unexpected events among tasks
- š MIP model with dependent tasks and cooling-down times
- Coltin, B.; Veloso, M. M.; and Ventura, R. 2011.

 Dynamic user task scheduling for mobile robots

 * Fixed schedules with a Mixed Integer Programming (MID) solv
 - š Fixed schedules with a Mixed Integer Programming (MIP) solver

Our starting point

- "Cashmore, M.; Fox, M.; Long, D.; et al. 2017.
 Opportunistic Planning in Autonomous Underwater Missions
- "Schermerhorn, P.; Benton, J.; Scheutz, M.; et al. 2009. Finding and Exploiting Goal Opportunities in Real-Time During Plan Execution

Monitoring model

- " Updated states received while subtasks are being executed
- " Generic task attributes
 Opportunities and Failures
 - **š** Indicate parameters in the state that should remain invariant
 - **š** Used to trigger reschedulings
- A rescheduling can
 - **š** Add or remove tasks in the pool
 - š Interrupt the current subtask

High-level Task Scheduler Architecture

Multilevel global scheme

- š Rescheduling for high-level events
- **š** Tasks sent to lower abstraction levels
- **š** States are generalized from lower levels

Task modeling and decomposition

	Task	Subtask-1	Subtask-2
Task type	DeliverDrink	MakeHotDrink	DeliverObject
Task owner	Alice	Alice	Alice
Location start	-	CoffeMaker	CoffeMaker
Location end	-	CoffeMaker	AliceOffice
Time start min	0	0	0
Time end max	15	15	15
Person target	Alice	-	Alice
Object	HotCoffee	HotCoffee	HotCoffee
Priority	1	10	10
Time operation	-	5	2
Time cooldown	-	-	6
Task depending	-	-	Subtask-1
Task depending Opportunities	VIP	HotCoffee, VIP	Person target, <i>VIP</i>
Failures	TO, BP	TO, BP	HotCoffee, TO, BP

MIP model with cooling-down time

Constraints:

$$w_{i}^{min} \leq s_{i} \leq w_{i}^{max} - o_{i} - d(l_{i}^{s}, l_{i}^{e})$$

$$w_{i}^{min} + o_{i} + d(l_{i}^{s}, l_{i}^{e}) \leq e_{i} \leq w_{i}^{max}$$

$$Previous(i, j) \Rightarrow s_{i} < e_{i} < s_{j}$$

$$\neg Previous(i, j) \Rightarrow s_{i} < s_{k} < s_{j}$$

$$Previous(i, j) \Rightarrow e_{j} \geq s_{j} + o_{j} + d(l_{i}^{e}, l_{j}^{s}) + d(l_{j}^{s}, l_{j}^{e})$$

$$Depends(j, i) \Rightarrow e_{i} < s_{j}$$

$$Depends(j, i) \Rightarrow c_{j} \geq e_{j} - e_{i}$$

Objective function:

Minimize $\sum_{i=1}^{n} e_i p_i$

Checks:

$$w_i^{min} + o_i + d(l_i^s.l_i^e) < w_i^{max}$$

 $c_i \ge o_i + d(l_i^s.l_i^e)$

Solution types

- š Proven optimal
- **š** Suboptimal
- š Not found

Unfeasible

Time limit

Order and overlapping

Depending subtasks and cooling-down

Positive integer parameters:

i, j, k: Any task of the pool w^{min} : Minimum start time w^{max} : Maximum end time

s: Start time (variable)

e: Ending time (variable)

o: Operation time

c: Cooling down time

p: Priority value higher than 0

 l^s : Starting location

 l^e : Ending location

d(a, b): Distance (time estimation) between a and b

Binary parameters:

Previous(i, j): Task i starts just before j (variable) Depends(j, i): Task j must start after i

Rescheduling policy

- " If the scheduler cannot find a suitable plan
 - **š Failures**: Monitoring cancels the next task

With the lowest priority first

Then the smallest time window that overlaps another

Š Opportunities:

- Tries to redo the current subtask later
- 2. If it cannot, it tries to redo the whole task
- 3. If it cannot, it evaluates whether to cancel the current task or the new task by maximizing the gain measure g

Gain:
$$g = \sum_{i=1}^{n} p_i$$

Sum of the priorities of the scheduled tasks

Experiments – CoBot robots

" Using the CoBot platform

- Their task catalog
- " Schedules work in the actual robot

" 180 simulations

- Scheduling times
- **Quality**

Experiments – Schedules

Task decomposition allows to optimize locations

Schedule 1

Start Task End 10 C1a 20 C2a 26 C_{1b} 27 31 32 33 C₂b C3a 34 42 C3b 43 47 53 VIP 48 739 Cost

Schedule 2

Task	Start	End
1 1 1	0	10
C1a	11	20
C2a	21	26
C1b	27	31
C2b	32	33
VIP	34	39
C3a	40	45
C3b	46	50
Cost	605	

Schedule 3

Task	Start	End	
	0	10	
C1a	11	20	
VIP	21	23	
C2a	24	29	
C1b	30	34	
C2b	35	36	
СЗа	37	45	
C3b	46	50	
Cost	454		

Experiments – Solving time vs. Subtasks

" Proven optimal solutions found up to size 10

Experiments – Quality vs. Subtasks

Conclusions

- " New architecture of task execution, monitoring and rescheduling
 - **S** Rescheduling according to opportunities and failures
 - š Interruption of tasks in the middle of their execution
 - **š Future work**: integration with a generic hierarchical control architecture, independent from the planning/scheduling mechanism

" Improved MIP model

- š Able to deal with **cooling-down times** and dependent tasks
- š Focused on the quality of the solutions
- **S Quality can be affected in extreme conditions** with large task pools and fast solving times required
- **Š Future work**:

Transform some hard-constraints (time-window) into soft Comparisons with other rescheduling systems

Task Monitoring and Rescheduling for Opportunity and Failure Management

José Carlos González, Manuela Veloso,

Fernando Fernández and Ángel García-Olaya

Planning and Learning Group

Thank you for your attention

Opportunities and Failures

" High-level events

- š Affect the current task and future tasks in the schedule
- š Interrupt tasks in the middle of their execution

Opportunities

- **š** Domain: can appear at any moment (VIP)
- **š** Specific: exclusive for a task (receipt of the coffee found earlier)

Failures

- **š** Domain: same failure for several tasks (blocked paths, timeout)
- **š** Specific: exclusive for a task (coffee stolen)

Experimental sets

Experimental sets A>B>C

- A: 480 random instances (task pools)
- B: 12 solved instances per each pool size from 1-15 (180 in total)
- " **c**: 12 random instances per each pool size from 8-15 (96 in total)

Experiments – Solution types

Set A

Set B

Set C