

Task Monitoring and Rescheduling for Opportunity and Failure Management

José Carlos González, Manuela Veloso,

Fernando Fernández and Ángel García-Olaya

Planning and Learning Group

UC3M Introduction – Tasks of service robots

- Robot must find a valid task schedule, and execute it
- Several constraints per task
- Users can add tasks anytime

Introduction Opportunities and Failures

Introduction Opportunities and Failures

Introduction Opportunities and Failures

Subtasks: A, B

Introduction Opportunities and Failures

Introduction Opportunities and Failures

What to do now?

- VIP first, then resume B
- Redo A and B
- VIP after B
- Cancel A and B
- Cancel VIP
- Try a quick VIP

Introduction Opportunities and Failures

Introduction Opportunities and Failures Modeling

Introduction Opportunities and Failures Modeling

UC3M Contribution and Related work

Our contribution

- **Component** to handle high-level unexpected events among tasks
- MIP model with dependent tasks and cooling-down times
- Coltin, B.; Veloso, M. M.; and Ventura, R. 2011.
 Dynamic user task scheduling for mobile robots
 - Fixed schedules with a Mixed Integer Programming (MIP) solver

Our starting point

- Cashmore, M.; Fox, M.; Long, D.; et al. 2017.
 Opportunistic Planning in Autonomous Underwater Missions
- Schermerhorn, P.; Benton, J.; Scheutz, M.; et al. 2009. Finding and Exploiting Goal Opportunities in Real-Time During Plan Execution

Introduction Opportunities and Failures Modeling

uc3m

Monitoring model

- Updated states received while subtasks are being executed
- Generic task attributes Opportunities and Failures
 - Indicate parameters in the state that should remain invariant
 - Used to trigger reschedulings

A rescheduling can

- Add or remove tasks in the pool
- Interrupt the current subtask

Opportunities and Failures **Modeling** Experiments

UC3M High-level Task Scheduler Architecture

Multilevel global scheme

- Rescheduling for high-level events
- Tasks sent to lower abstraction levels
- States are generalized from lower levels

Opportunities and Failures **Modeling** Experiments

UC3M Task modeling and decomposition

		Task	Subtask-1	Subtask-2	
	Task type	DeliverDrink	MakeHotDrink	DeliverObject	
	Task owner	Alice	Alice	Alice	
	Location start	-	CoffeMaker	CoffeMaker	
	Location end	-	CoffeMaker	AliceOffice	
	🕉 Time start min	0	0	0	
•	Time end max	15	15	15	
	Person target	Alice	-	Alice	
	Object	HotCoffee	HotCoffee	HotCoffee	
	Priority	-	10	10	
	Time operation	-	5	2	
-	ਰ Time cooldown	-	-	6	
	Task depending	-	-	Subtask-1	
-	Task depending Opportunities	VIP	HotCoffee, VIP	Person target, VIP	
	Failures	TO, BP	TO, BP	HotCoffee, TO, BP	

Opportunities and Failures **Modeling** Experiments

UC3M MIP model with cooling-down time

Opportunities and Failures **Modeling** Experiments

UC3M Rescheduling policy

- If the scheduler cannot find a suitable plan
 - Failures: Monitoring cancels the next task
 - With the lowest priority first
 - Then the smallest time window that overlaps another

Opportunities:

- 1. Tries to redo the current subtask later
- 2. If it cannot, it tries to redo the whole task
- 3. If it cannot, it evaluates whether to cancel the current task or the new task by maximizing the gain measure *g*

Gain:
$$g = \sum_{i=1}^{n} p_i$$

Sum of the priorities of the scheduled tasks

Opportunities and Failures **Modeling** Experiments

UC3M Experiments – CoBot robots

- Using the CoBot platform
 - Their task catalog
 - Schedules work in the actual robot
- 180 simulations
 - Scheduling times
 - Quality

Modeling Experiments Conclusions

UC3M Experiments – Schedules

• Task decomposition allows to optimize locations

Schedule 1

Schedule 2

Schedule 3

Task	Start	End	Task	Start	End	Task	Start	End
	0	10		0	10		0	10
C1a	11	20	C1a	11	20	C1a	11	20
C2a	21	26	C2a	21	26	VIP	21	23
C1b	27	31	C1b	27	31	C2a	24	29
C2b	32	33	C2b	32	33	C1b	30	34
C3a	34	42	VIP	34	39	C2b	35	36
C3b	43	47	C3a	40	45	C3a	37	45
VIP	48	53	C3b	46	50	C3b	46	50
Cost	73	9	Cost	60	5	Cost	45	4

Modeling Experiments Conclusions

UC3M Experiments – Solving time vs. Subtasks

• Proven optimal solutions found up to size 10

Modeling Experiments Conclusions

UC3M Exp

Experiments – Quality vs. Subtasks

• Quality in "10s suboptimal" is acceptable for the CoBot's domain

Modeling Experiments Conclusions

uc3m

Conclusions

- New architecture of task execution, monitoring and rescheduling
 - Rescheduling according to opportunities and failures
 - Interruption of tasks in the middle of their execution
 - Future work: integration with a generic hierarchical control architecture, independent from the planning/scheduling mechanism

• Improved MIP model

- Able to deal with cooling-down times and dependent tasks
- Focused on the quality of the solutions
- Quality can be affected in extreme conditions with large task pools and fast solving times required
- Future work:
 - Transform some hard-constraints (time-window) into soft
 - Comparisons with other rescheduling systems

Task Monitoring and Rescheduling for Opportunity and Failure Management

José Carlos González, Manuela Veloso,

Fernando Fernández and Ángel García-Olaya

Planning and Learning Group

Thank you for your attention

25 June 2018

Computer Science Department

Uc3m Opportunities and Failures

- High-level events
 - Affect the current task and future tasks in the schedule
 - Interrupt tasks in the middle of their execution
- Opportunities
 - Domain: can appear at any moment (VIP)
 - Specific: exclusive for a task (receipt of the coffee found earlier)

• Failures

- Domain: same failure for several tasks (blocked paths, timeout)
- Specific: exclusive for a task (coffee stolen)

uc3m

Experimental sets

Experimental sets A>B>C

- A: 480 random instances (task pools)
- B: 12 solved instances per each pool size from 1-15 (180 in total)
- C: 12 random instances per each pool size from 8-15 (96 in total)

UC3m Experiments – Solution types

	Configuration	10 s, 4.4% tol.	10 s	30 s
	Time out: no solut.	11.0%	11.0%	8.8%
	Proven unfeasible	0.8%	0.8%	0.8%
A	Check failed	4.4%	4.4%	4.4%
	Proven optimal	16.3%	42.7%	43.1%
S	Min. gap reached	54.0%	0.0%	0.0%
	Time out: found	13.5%	41.0%	42.9%
	Solutions found	83.8%	83.8%	86.0%
	Proven optimal	17.8%	51.1%	52.2%
B	Min. gap reached	68.3%	0.0%	0.0%
etl	Time out: found	13.9%	48.9%	47.8%
S	Av. solver time (s)	2.14 ± 3.6	5.07 ± 4.9	14.7 ± 14.8
	Av. quality (min)	611 ± 256	596 ± 250	590 ± 247
	Proven optimal	0.0%	10.4%	12.5%
C	Min. gap reached	74.0%	0.0%	0.0%
Set	Time out: found	26.0%	89.6%	87.5%
	Av. solver time (s)	3.98 ± 4.1	9.24 ± 2.5	26.88 ± 8.6
	Av. quality (min)	738 ± 135	721 ± 137	709 ± 137