
A New Approach to Heuristic Estimations for Cost-Based Planning

Raquel Fuentetaja and Daniel Borrajo and Carlos Linares
Departamento de Informática, Universidad Carlos III de Madrid

Ada. de la Universidad, 30. 28911 Leganés(Madrid). Spain
rfuentet@inf.uc3m.es, dborrajo@ia.uc3m.es, clinares@inf.uc3m.es

Abstract

Solving relaxed problems is a commonly used technique in
heuristic search to derive heuristic estimates. In heuristic
planning, this is usually done by expanding a planning (reach-
ability) graph on the current search state where the delete lists
of operators are removed from their definition. Usually, this
technique is used to obtain plan length estimates. However,
in cost-based planning the goal is to find plans minimizing
some criteria. This requires the redefinition of the heuristic
estimation to account for operators costs. This paper intro-
duces a new approach to compute cost-based heuristics us-
ing planning graphs in order to overcome some problems of
the existing heuristics, together with a common way of char-
acterizing heuristics based on planning graphs. We explore
the heuristics behaviour in combination to two search algo-
rithms. Results show that in some domains the new heuristics
are adequate to obtain good quality plans without imposing
significant overheads in running time.

Introduction
One of the most successful techniques to guide search is us-
ing heuristic functions obtained from simplified (or relaxed)
versions of problems. The most common relaxation used in
STRIPS planning to guide heuristic planners is to ignore the
delete effects of the domain operators. This type of relax-
ation was first proposed by Mcdermott (McDertmott 1996)
and it has been used in many planners as HSP (Bonet &
Geffner 2001), FF (Hoffmann 2003), or SAPA (Do & Kamb-
hampati 2003). A standard technique to compute this relax-
ation consists of generating a relaxed graph-plan following
GRAPHPLAN (Blum & Furst 1995).

Nowadays, some planners as LPG-td (Gerevini, Saetti, &
Serina 2004), SAPA (Do & Kambhampati 2003), SimPlan-
ner (Sapena & Onaindı́a 2004), or Metric-FF (Hoffmann
2003) deal with planning domain representations more ex-
pressive than STRIPS, like defining temporal actions or usage
of numerical resources. One of these extensions consists of
incorporating a quality metric in the planning problems for
measuring how good a plan is. The corresponding planning
model is called cost-based planning.

As this planning model becomes more expressive than
the classical one (STRIPS), the heuristics and methods to

Copyright c© 2008, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

compute them should account for that extra expressiveness.
Nowadays, cost-based planning is an area of growing inter-
est since probabilistic, temporal and over-subscription plan-
ning problems can be solved by transforming them into cost-
based planning problems.

In this paper, we focus on the study of the behaviour of
different heuristics for cost-based planning and propose a
new approach to compute cost-based heuristics, characteriz-
ing all heuristics based on relaxed planning graph by defin-
ing a generalized algorithm as a common framework. We
also study the impact of the different heuristics when using
them in combination with different search algorithms.

Planning model and heuristics for cost-based
planning

We consider a cost-based planning problem as a tuple
(P,A, I,G, M), where P is the set of atoms, A is a set of
grounded actions, I ∈ P and G ∈ P are the initial state and
the set of goals and M is the metric criteria. As in STRIPS
planning, each action a ∈ A is represented as three lists:
pre(a) ⊆ P , add(a) ⊆ P and del(a) ⊆ P (preconditions,
adds and deletes). Each action also has a cost, cost(a), that
depends on the metric criteria M (in STRIPS planning this
cost is uniform and equal to 1). A plan π is an ordered set of
grounded actions ai, whose cost is:

cost(π) =
∑

∀ai∈π

cost(ai)

The optimal plan for solving a cost-based planning prob-
lem is a plan π∗ with the minimum cost. In this work, we are
not interested on finding the optimal plan but a good plan.
Instead, we focus on obtaining a good trade-off between so-
lution cost and time to solve.

Most heuristics for cost-based planning are based on re-
laxed planning graphs (RPGs) or can be implemented us-
ing them. A RPG can be represented as a sequence (P0,
A0, . . . ,Pi−1, Ai−1, Pi) of proposition sets (Pj) and action
sets (Aj). These sets are built incrementally starting with
P0 = I (initial state) as the initial layer. Then, iteratively,
actions that can be applied in a given layer are inserted as Ai,
and the add effects of those actions are inserted in the next
proposition layer Pi+1 together with all propositions in Pi.
A general algorithm for building RPGs is shown in figure 1.

COMPUTE RPG HEURISTIC(G,I,A)
i = 0; P0 = I;

while not end condition() do
Ai = compute next action level()

Pi+1 = compute next proposition level()

if fail condition() then return ∞
i = i + 1

return extract heuristic()

Figure 1: General algorithm for computing heuristics using
relaxed planning graphs.

The computation of all heuristics we describe now follow
this algorithm. They differ on how they carry out the com-
putation of the next action and proposition levels, check the
end and fail conditions and extract a heuristic value from the
expanded planning graph.

METRIC-FF heuristic
METRIC-FF (Hoffmann 2003) instantiates the previous al-
gorithm as follows:

• end condition() is true at level i when all top-level
goals are included in this level: G ⊆ Pi

• compute next action level() returns the set of
all applicable actions in the current layer i : Ai = {a ∈
A | prec(a) ⊆ Pi}

• compute next proposition level() returns the
set of literals achieved so far: Pi ∪ add(a),∀a ∈ Ai

• fail condition() returns true when Pi+1 = Pi, i.e.
when a fixpoint is reached without finding the top-level
goals

• extract heuristic() extracts a sequential relaxed
plan from the RPG without backtracking, and then returns
the heuristic of METRIC-FF, hmff, defined as the sum of
the costs of all actions in that plan. Though hmff is based
on the costs of actions in the plan, the computation of the
relaxed plan itself ignores the cost information. The ad-
missibility of hmff is not guaranteed because the extracted
relaxed plan is not always optimal.

HSP extended heuristics
HSP (Bonet & Geffner 2001) heuristics can be extended
to deal with cost-based planning by including the cost of
each action, cost(a), as in (Keyder & Geffner 2007). In
that work, the authors propose a heuristic based on the addi-
tive heuristic. Instead, we use the same paradigm defined in
the general procedure of Figure 1. The cost of achieving an
atom p from a state s can be defined as:

gs(p) =

(
0 if p ∈ s
min

a∈A(p)
[cost(a) + gs(prec(a))] otherwise (1)

where A(p) stands for the actions that add p, and
gs(prec(a)) stands for the estimated cost of achieving the
preconditions of action a from s.

The cost gs(C) of the set of atoms C is defined in terms
of the cost of the atoms in the set. It can be defined as the
sum of the costs of the individual atoms in C (hadd), or
as the maximum cost of the atoms (hmax). The heuristic
evaluation of a state s is gs(G), where G are the goals.

These heuristics can be implemented with RPGs in the
way proposed by (Do & Kambhampati 2003), though they
do not necessarily need a RPG for its implementation. Using
a RPG implies instantiating the generic algorithm in Figure 1
in the same way as METRIC-FF does but:

• compute next proposition level() also com-
putes a propagation of costs such that each proposition p
in a level has an associated cost equal to the current update
of hadd(p) (or hmax) in that level. These costs decrease
monotonically with layers.

• end condition() since the costs decrease monoton-
ically with layers, when G ⊆ Pi, costs of propositions
can usually be improved if the RPG is extended. The
RPG can be extended by building an additional layer (1-
lookahead), k layers (k-lookahead), or until a fixpoint
(∞-lookahead) is reached in which both propositions and
costs are stable. The formal definitions of hadd(p) and
hmax correspond to an ∞-lookahead

• extract heuristic() does not extract a solution
from the RPG, but returns hadd(G) (or hmax(G)) of the
last layer generated.

SIMPLANNER heuristic
The main difference between the heuristic employed in SIM-
PLANNER (Sapena & Onaindı́a 2004), hsim, and hmff is that
in the former, levels of the graph do not represent time steps,
but costs according to the problem metric. In hmff, the esti-
mation for a cost-based planning problem is computed from
a RPG built to minimize parallel plan length. But, if the
goal is to minimize a given cost function, it seems better
to expand the RPG based on costs for achieving proposi-
tions/actions and not on the number of operators to achieve
it. While hsim minimizes the cost for achieving literals, a
method for minimizing the costs of actions is introduced in
the next section.

In the case of SIMPLANNER:

• compute next action level() returns the set of
all applicable actions whose preconditions have costs less
than or equal to a value cost limiti. So,

Ai = { a ∈ A | prec(a) ⊆ Pi∧ ∀p ∈ prec(a), cost(p) ≤ cost limiti}

The cost limiti of layer i is the minimum cost of all propo-
sitions achieved up to that layer not yet in the RPG. A global
list, L, with the current minimum cost for every achieved
proposition is maintained to compute cost limiti. Initially,
L has the propositions in the initial state (whose cost is 0).
Propositions not appearing in L have cost ∞.

The execution of actions modifies L, instead of the next
proposition layer: everytime an action a achieves a proposi-
tion p not yet included in the RPG its cost is updated in L
as:

cost(p) = min[cost(p), cost(a) +
X

r∈prec(a)

cost(r)] (2)

After the execution of all the actions in Ai, cost limiti+1

is computed as the cost of the proposition with minimum
cost in L. Propositions with cost equal to cost limiti+1 are
then deleted from L, and:

• compute next proposition level() returns the
union of the set of propositions in L whose cost is
cost limiti+1 and the propositions in the previous level
Pi.

• fail condition() returns true when L is empty (i.e.
when a fixpoint is reached).

The end condition() function is the same as in hmff.
The extract heuristic() function is also similar ex-
cept for minor implementation details.

Figure 2 shows an example of the cost limit computed
for each level in the RPG of hsim. There are five ac-
tions: a1(pre:{p}, add:{q, r}, cost:15), a2(pre:{p}, add:{s},
cost:20), a3(pre:{q, r, s}, add:{t}, cost:10), a4(pre:{t},
add:{k}, cost:2), and a5(pre:{p}, add:{k}, cost:50). In the
initial state we have p, and the goal is k. The actions in A0

add their effects to the list L; a1 adds q and r with cost 15,
a2 adds s with cost 20, while a5 adds k with cost 50. So, the
next proposition level is composed of p and least costly to
achieve propositions, q and r, delaying the achievement of s
and k to later. The execution of the action a3 includes t in L
but it does not include t in P3. When the goal k appears in
P3, the solution plan is extracted as indicated by the arrows.
The cost of this solution (hsim) is 50. The heuristics hmff,
hadd and hmax can be easily computed for this example,
yielding the values 50, 50, and 32, respectively.

p a1

0 0

P0 A0 P1 A1 P2

15 15

L={p(0)}

a2

20

A2 P3

a3

20 50

L=q(15),r(15),

 s(20),k(50)}

L={s(20),

 k(50)}

L={k(50)

 t(60)}

p
q
r

s
r
q
p

k
s
r

q
p

a5

Figure 2: Example of the RPG for hsim.

Theorem 1. If a proposition p appears for the first time
in proposition level i, the cost limit of the next action level,
cost limiti, is hadd(p). The heuristics hsim and hadd as-
sume subgoal independence. They are different in that hsim
is computed from an extracted sequential relaxed plan as
described in hmff, while an implementation of hadd over
RPGs does not extract the plan, but returns the sum of the
propagated cost for each goal (i.e. the cost that the goal has
in the last proposition layer).

Level-based heuristics
In our approach, we build the RPG based on delaying ac-
tions instead of propositions as in hsim, using an idea sim-
ilar to the Dijkstra algorithm. First, we compute the ap-
plicable actions on the initial state, App0 (their precondi-
tions are in P0). Then, we generate A0 to contain only
those actions in App0 whose cost is minimum; that is, A0 =
{a ∈ App0 | a ∈ arg cost limit0}, where cost limit0 =
mina∈App0 cost(a). In general, cost limiti represents the
cost of the actions in Ai plus the cost of their preconditions.
The rest of actions in App0 are added to a delayed set of
actions D = App0 − A0. The next set of propositions P1

is computed as in METRIC-FF by adding to P0 the propo-
sitions in the add lists of actions in A0. We then compute
the set of actions that can be applied, App1, by the union of
those new actions that can be applied from the propositions
in P1 and the delayed actions, D. Again, the next action
layer, A1, is computed by selecting the less costly actions
from that set: A1 = {a ∈ App1 | a ∈ arg cost limit1},
and a new delayed set D is computed. The process contin-
ues until all goals are true in a given proposition layer. With
this solution we do not assume atoms independence as in the
case of hsim and hadd.

• compute next action level() returns the set

Ai = {a ∈ Appi | a ∈ arg cost limiti}

We provide two ways of computing cost limiti in each
action level, giving rise to two different heuristics hlevel1
and hlevel2:

• hlevel1: cost limiti = mina(cost(a) + cost limiti−1),
where a are the applicable actions not yet in the RPG.
Here we assume that the cost of the preconditions of a is
the cost limit of the previous level.

• hlevel2: cost limiti = mina(cost(a) + cost limitk),
where a are the applicable actions not yet in the RPG,
and k + 1 is the first proposition level in which all the
preconditions of a appear. Here we assume that the cost
of the preconditions of a is given by the first level in which
all of them appear.

• fail condition() returns true when Pi+1 = Pi and
there are no applicable actions not yet in the RPG.

The end condition(), compute next propo-
sition level() and extract heuristic() func-
tions are as in hmff.

The Figure 3 shows how the cost limits corresponding to
hlevel1 and hlevel2 are computed for the example of the
previous section. The cost limit0 (15) is the cost of the least
costly action (a1). A0 only contains a1. When a1 is applied
it adds q and r to P1. Then, the cost limit1 is computed:

• For hlevel1, as the cost limit of the previous layer (15)
plus the cost of the least costly action, 20 (given by a2).

• For hlevel2, as the cost of a2 (20) because it is the least
costly action and all its preconditions are true initially.

When the goal k appears in P4, the solution plan is extracted
as indicated by the arrows. The cost of this solution is 47.

For this example hlevel1 and hlevel2 are the same and they
are the only heuristics that predict exactly the cost of the
optimal solution.

p a1 a2

P0 A0 P1 A1 P2 A2 P3

15 20

35

30

15 45

a3

A3

47

32

a4

P4

p
q
r r

q
p

t
s
r

p
q

k
t
s
r
q
p

hlevel1

hlevel2

s

Figure 3: Examples of the RPG for hlevel1 y hlevel2.

Theorem 2. In the case of hlevel2, if a proposition p
appears for the first time in proposition level i + 1, the cost
limit of the previous action level, cost limiti, is hmax(p).

In spite of this theorem, hlevel2 is not equal to hmax be-
cause hlevel2 is computed from an extracted sequential re-
laxed plan as described in hmff, while hmax(G) returns the
cost of the last layer expanded.

Theorem 3. In the case of hlevel1, if a proposition p
appears for the first time in proposition level i + 1, the cost
limit of the previous action level is between hmax(p) and
hadd(p): hmax(p) ≤ cost limiti ≤ hadd(p).

When optimizing plan length, the algorithm behaves as
METRIC-FF. Table 1 summarizes all the described heuris-
tics in accordance with the general algorithm depicted
Figure 1. The column “Levels of the RPG” synthe-
sizes the functions compute next action level()
and compute next proposition level(). It can
be: classical, classical with a process of cost propagation or
cost-oriented. The fail condition() is not included
because it is similar for all cases. The only admissible
heuristic is hmax.

Table 1: Differences between heuristics.
h end condition() Levels of the RPG extract heuristic()

hadd 0-lookahead classical costs of goals

hmax ∞-lookahead (costs prop.) (last RPG level)

hmff G ⊆ Pt classical relaxed plan

hsim G ⊆ Pt cost-oriented relaxed plan

hlevel1 G ⊆ Pt cost-oriented relaxed plan

hlevel2 G ⊆ Pt cost-oriented relaxed plan

Search algorithms
In order to compare the behaviour of the previous heuris-
tics, we will use two search algorithms on top of METRIC-
FF: weighted-A∗ and Cost-EHC (CEHC). This section in-
troduces CEHC, an adaptation of Enforced Hill Climbing
(EHC) we propose, suitable to deal with cost-based planning
problems.

Enforced Hill Climbing (EHC) is the algorithm used by
METRIC-FF when the metric is plan length. For each se-
lected node n, EHC uses a forward breadth-first search until

it finds a successor node in the subtree that returns a bet-
ter heuristic estimate than n. This will become the next se-
lected node, and search continues. If no solution is found,
it switches to weighted-A∗. If a metric criteria different of
plan length is given, METRIC-FF uses a standard weighted-
A∗. However, weighted-A∗ is usually too expensive both in
time and memory, and as shown in the experimental section,
only a few problems can be solved. For this reason, we use
EHC for any metric criteria, but breaking ties in favour of
shorter solutions. So, we compute for each state two differ-
ent heuristics using the same relaxed plan: the sum of the
cost of each action and the plan length. We call this algo-
rithm Cost-EHC (CEHC).

EHC reduces the branching factor by prunning actions
that are not helpful. The helpful actions are computed dur-
ing the extraction of a relaxed plan as applicable actions
in the initial state that add a relevant subgoal for the re-
laxed plan: if the sets of relevant subgoals in each level are
G0, G1, . . . , Gfinal layer, the helpful actions achieve propo-
sitions in G1. To compute the helpful actions we follow the
same philosophy as METRIC-FF, but ordering them by in-
creasing order of costs. Besides, we take into account that
actions delayed in the first level (actions whose precondi-
tions are true, but are not executed due to the cost limit
condition) of the graph can achieve relevant subgoals in a
set different of G1. Hence, we re-define the set of helpful
actions as:

H(s) = {a ∈ A | prec(a) ⊆ I, add(a) ∩Gi 6= ∅, i ≥ 1}

Thus, an action is considered helpful when its precondi-
tions are true in the initial state and it achieves propositions
in any set of relevant subgoals different of G0.

A similar idea can be applied to hsim. However, the idea
of helpful actions is not applicable when the process of ex-
tracting the heuristic value does not obtain a relaxed plan
from the RPG (hadd and hmax).

Experimental results
In this section, we present a summary of the results obtained
from different experiments, using an implementation of all
the aforementioned heuristics in METRIC-FF. The domains
and problems used herein are some numeric domains from
the 3rd International Planning Competition (IPC3).1 In later
IPCs almost all domains include durative actions and the
study of its management in a numerical setting is outside the
scope of this paper. We chose the domains from the IPC3
where more problems were solved: the Zenotravel, Driver-
log, and Depots domains. Among other domains that we did
not use are: the Satellite domain, because there are many
dead-ends and the planner fails using all heuristics in almost
all problems; and the Rovers domain, where the metric is
restricted to the number of recharges and only one action
has cost greater than one. For uniformity, we modified the
problems of the same domain to have all the same metric ex-
pression. Thus, we used the following as metric expressions
to minimize: fuel used in Zenotravel, number-of-operators
+ driven + walked in Driverlog and fuel cost in Depots.

1http://planning.cis.strath.ac.uk/competition/

We ran the experiments on a Linux machine running at 2
GHz. The maximum memory allowed for the planners was
500Mb. The maximum time allowed for the planners to find
a solution was set to 300 seconds (this is the time bound
usually used in IPCs).

Results on solvability
Firstly, Table 2 shows the number of problems solved by
all configurations, i.e. all heuristics with A∗ and the CEHC
algorithm. The number aside each domain name refers to
the total number of test problems. As expected, the A∗ al-
gorithm fails to find a solution within the time bound on a
large number of problems. The number of problems solved
by CEHC in all cases (except for hmax) is very similar LPG-
td(quality) (Gerevini, Saetti, & Serina 2004) (in the second
column), which is a competitive cost-based planner. In the
Zenotravel domain CEHC with hlevel1 solves all problems.

Table 2: Problems solved by all configurations.
Domain LPG A∗ / CEHC

mff level1 level2 sim add max

Zeno(20) 20 10/18 8/20 7/17 10/16 12/15 4/10

Dlog(20) 15 3/16 4/15 4/15 4/15 9/15 1/12

Depot(22) 21 6/21 8/21 8/21 4/21 14/19 2/7

Total(%) 90 30/89 32/90 31/85 29/84 56/77 11/47

Heuristics quality
Secondly, we wanted to estimate how far all the previous
heuristics are from the optimal values. In order to com-
pute this, we would need to compute the cost of the opti-
mal solution from each node in the search tree and com-
pare it against each heuristic estimation. Instead, we pro-
pose here a simplified way of computing an estimation of
the distance of each heuristic value to an estimated opti-
mal value, as depicted in Figure 4. We selected the Zeno-
travel, and for each node in the search tree of 50 randomly
generated problems, we compared the cost of the best solu-
tion found from that node minus the g value of that state
(hbest solution), in the x-axis, with the h estimate of this
state, in the y-axis. Estimations above the main diagonal are
non-admissible. Estimations below the diagonal could also
be non-admissible, because we do not compare against the
optimal solution cost, but at least they are under-estimates
of the best cost found so far. For these problems the most
accurate heuristic estimations were achieved with hlevel1
followed by hsim, in contrast with hmff that produces the
least accurate estimations. We use the Mean Absolute Er-
ror (MAE) MAE = 1

N

∑
|hbest solution(s)−hi(s)|, where

N is the total number of states. The MAEs for all heuris-
tics are: 84.5 (hlevel1), 128.2 (hsim), 269.8 (hlevel2), 342
(hadd), 562.1 (hmax) and 1875,5 (hmff). This type of infor-
mation can be very helpful, for instance, to provide an idea
of what w to use in a weighted-A∗ search. Taking into ac-
count that the real value of heuristics for planning problems
is how well they select “optimal” actions from the rest and
not how precise they are, it would be interesting to deter-

mine how related are the absolute accuracy of the heuristics
and their goodness on ranking correctly the actions.

Figure 4: Differences among heuristic values in relation to
the best cost of some solutions paths found with A∗ in the
Zenotravel domain.

Experiments with A∗

Thirdly, we wanted to compare the quality of the solutions
found using the standard weighted-A∗ for all heuristics. We
compare only the quality of the problems solved by all con-
figurations, and this number was quite small for all domains:
4, 2, and 3 for Zenotravel, Driverlog and Depots, respec-
tively. For this reason we only provide some results for the
Zenotravel domain without taking into account hmax (thus
we have 7 solved problems). For these problems, all heuris-
tics provide a positive accumulated cost gain with respect to
hmff (we take the solution of METRIC-FF as a reference for
the comparisons). Results are shown in Table 3. Columns
are from left to right: domain (along with the number of
problems solved by all configurations), the heuristic func-
tion tested, the percentage of cost gain with respect to using
the standard METRIC-FF heuristic, the percentage of prob-
lems that each version solved with equal, better and worse
quality than METRIC-FF respectively, and finally the com-
parison in terms of time and number of nodes with respect
to METRIC-FF where ×n means that the time (or number
of nodes) of hmff is multiplied by n.

Table 3: Comparison against hmff using A∗ in the Zeno-
travel domain.

Domain h cost equal better worse CPU #nodes

gain (%) (%) (%) (%) time

level1 13.5 42.8 57.1 0 ×1.6 ×1.2

Zeno(7) level2 13.5 42.8 57.1 0 ×4.1 ×1.6

sim 4.0 42.8 42.8 14.2 ×7.8 ×2.0

add 3.0 42.8 28.5 28.5 ×2.6 ×1.2

We can see that the two new heuristics provide a reason-
able trade-off between the quality of solutions (they obtained
the best results in all problems and the relation time/nodes
to compute it (only 1.6/1.2 the behaviour of METRIC-FF).

In the Zenotravel domain subgoals are not independent.
To board several people in a location the plane should be in
the same location, but it is not necessary to add the cost of
flying the plane to that location for each person. Another
important thing is how the action costs are distributed. In
this domain the costs of the operators zoom and fly are con-
siderably greater than zero, which is the cost of the operator
board. This fact further increases the error of assuming sub-
goal independence. This explains why the heuristics hlevel1
and hlevel2 obtain better results than hsim and hadd.

Experiments using CEHC
The next step is to compare with hmff using the CEHC algo-
rithm. A summary is shown in Table 4. We do not include
the results for hmax in the Zenotravel and Depots domains
because this heuristic restricts a lot the number of problems
solved. In all the tested domains the accumulated cost is
better using any heuristic than using hmff.

Table 4: Comparison against hmff using CEHC.
Domain h cost equal better worse CPU #nodes

gain (%) (%) (%) (%) time

level1 42.6 6.6 80 13.3 ×1.4 ×1.3

Zeno level2 45.3 6.6 86.6 6.6 ×8.3 ×1.7

(15) sim 47.3 6.6 86.6 6.6 ×6.9 ×1.2

add 35.6 6.6 93.3 0 ×56.7 ×5.8

level1 1.6 16.6 50 33.3 ×1.4 ×0.6

Dlog level2 7.5 8.3 75 16.6 ×8.8 ×1.8

(12) sim 10.9 8.3 58,3 33.3 ×1.9 ×0.7

add 19.5 0.0 83.3 16.6 ×4.9 ×0.77

max 1.5 0.0 66.6 33.3 ×44.2 ×10.9

level1 18.9 15.8 73.7 10.5 ×1.1 ×1.9

Depots level2 18.9 15.8 73.7 10.5 ×1.1 ×1.9

(19) sim 30.2 21.0 63.1 15.8 ×0.8 ×0.4

add 29.0 15.8 68.4 15.8 ×3.5 ×0.9

For the Zenotravel domain, the best result in cost gain is
obtained using hsim, though hlevel1 and hlevel2 perform
very similarly. However, the CPU time with hlevel1 is only
1.4 times the time with hmff, while with hsim the time is
multiplied by 6.9. In terms of number of nodes, these heuris-
tics perform very similar to hmff.

In the Driverlog domain, the best results in cost gain are
obtained with hadd and hsim. Both heuristics increase a lit-
tle the CPU time, though they decrease the number of nodes.
Therefore, the increase in the CPU time is due to the heuris-
tic computation (not to the search).

Finally, in the Depots domain, hsim is the heuristic with
best cost gain. Besides, it reduces the time and the number
of expanded nodes of METRIC-FF. In this domain hadd also
performs well in terms of cost gain, though it increases the
CPU time 3.5 times.

CEHC is a search algorithm strongly influenced by the
order in which actions are selected, and therefore it is less
sensitive than A∗ to changes in the heuristic evaluation.
This makes it difficult to explain the obtained results from
the point of view of domain-problem characteristics (though
they show that METRIC-FF can be easily improved in terms
of quality).

Conclusions
In this paper we characterize the heuristics for forward
search in cost-based planning following a generalized al-
gorithm. Using this characterization we introduce two new
heuristics that try to provide a reasonable tradeoff between
solution cost and time to solve and we establish their relation
to the previous heuristics. We report experiments using two
search algorithms (A∗ and CEHC). CEHC is a new adap-
tation of EHC for dealing with costs. The notion of helpful
actions, used to prune the search, is also adapted for the case
of our heuristics. We also propose a way of characterizing
heuristics quality by comparing heuristic values against pos-
sibly good solution costs.

Results show that the new heuristics improve over
METRIC-FF in terms of quality, while not incurring in a
significant overhead in the time to solve. We would like to
compare also with LPG-td(quality), using as the search algo-
rithm a combination of CEHC and A∗. Next, we would like
to define and compare against more heuristics and search al-
gorithms in order to understand their behaviour with respect
to domain characteristics.

Acknowledgements
This work has been partially supported by the Spanish MEC
project TIN2005-08945-C06-05.

References
Blum, A. L., and Furst, M. L. 1995. Fast planning through
planning graph analysis. IJCAI-95, volume 2, 1636–1642.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. AI 129(1-2):5–33.
Do, M. B., and Kambhampati, S. 2003. Sapa: A scalable
multi-objective heuristic metric temporal planner. JAIR
20:155–194.
Gerevini, A.; Saetti, A.; and Serina, I. 2004. Planning with
numerical expressions in LPG. ECAI-04, 667–671.
Hoffmann, J. 2003. The Metric-FF planning system:
Translating “ignoring delete lists” to numeric state vari-
ables. JAIR 20:291–341.
Keyder, E., and Geffner, H. 2007. Heuristics for plan-
ning with action costs. In Proceedings of the 12th Confer-
ence of the Spanish Association for Artificial Intelligence
(CAEPIA).
McDertmott, D. 1996. A heuristic estimator for means-
ends analysis in planning. In AIPS-96, 142–149.
Sapena, O., and Onaindı́a, E. 2004. Handling numeric cri-
teria in relaxed planning graphs. In Advances in Artificial
Intelligence. IBERAMIA, LNAI 3315, 114–123.

