
Exploring the Synergy between Two Modular
Learning Techniques for Automated Planning

Raquel Fuentetaja
Planning and Learning Group
Universidad Carlos III. Spain

Lukáš Chrpa and Thomas L. McCluskey and Mauro Vallati
PARK research group

University of Huddersfield

Abstract

In the last decade the emphasis on improving the opera-
tional performance of domain independent automated plan-
ners has been in developing complex techniques which merge
a range of different strategies. This quest for operational ad-
vantage, driven by the regular international planning compe-
titions, has not made it easy to study, understand and pre-
dict what combinations of techniques will have what effect
on a planner’s behaviour in a particular application domain.
In this paper, we consider two machine learning techniques
for planner performance improvement, and exploit a modular
approach to their combination in order to facilitate the anal-
ysis of the impact of each individual component. We believe
this can contribute to the development of more transparent
planning engines, which are designed using modular, inter-
changeable, and well-founded components. Specifically, we
combined two previously unrelated learning techniques, en-
tanglements and relational decision trees, to guide a “vanilla”
search algorithm. We report on a large experimental analysis
which demonstrates the effectiveness of the approach in terms
of performance improvements, resulting in a very competitive
planning configuration despite the use of a more modular and
transparent architecture. This gives insights on the strengths
and weaknesses of the considered approaches, that will help
their future exploitation.

Introduction
Automated planning is one of the most prominent AI chal-
lenges; it has been studied extensively for several decades
and led to many real-world applications. The International
Planning Competition (IPC), a nearly bi-annual major event
of the planning community, has encouraged the develop-
ment of planning engines to a level of optimisation that
has led to the utilisation of some of these engines in ap-
plications such as narrative generation (Porteous, Cavazza,
and Charles 2010), machine tool calibration (Parkinson,
Longstaff, and Fletcher 2014), traffic management (Jimoh
et al. 2013), to mention a few. These planning engines in-
corporate well known techniques, like approximations of the

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

h+ heuristic (Betz and Helmert 2009), and generation and
use of landmarks (Hoffmann, Porteous, and Sebastia 2004).
Thus, these competition tuned engines are serving the pur-
pose of promoting the use of planning in a wide variety
of applications. For the sake of optimisation, the integra-
tion and implementation of these techniques has been per-
formed in such a way that the effect of one particular com-
ponent, within the overall performance of the system, is dif-
ficult to judge. Under these circumstances, machine learn-
ing, in the context of automated planning has a long history.
A recent and extensive review can be found in (Jiménez et
al. 2012). One important topic in planning regards learn-
ing control knowledge, i.e., domain-dependent knowledge
related to the structure of related planning tasks that is use-
ful to guide the search algorithm. Examples can be found in
(de la Rosa et al. 2011), that describes a technique to learn
control knowledge in the form of relational decision trees,
and (Krajnansky et al. 2014), that describes a technique that
learns control rejection rules. Other tendencies in this line
are macro-action learning (Botea et al. 2005; Chrpa, Val-
lati, and McCluskey 2014) and learning to improve heuris-
tic functions (Yoon, Fern, and Givan 2008). Machine learn-
ing has been applied to planning for other purposes also,
such as learning domain theory (Yang, Wu, and Jiang 2007;
Cresswell, McCluskey, and West 2009); learning to predict
planner performance (Roberts and Howe 2009) or learn-
ing portfolio configurations (Cenamor, De La Rosa, and
Fernández 2013).

In the context of automated planning, very few works
have integrated different learning techniques in the same
framework. Usually, a typical system involves a planning
engine and a single learning approach. This is mainly due
to the fact that it is much easier to develop planner-specific
tools, rather than general ones. On the other hand, planner-
specific tools are rarely re-implemented for a different en-
gine, and their impact on a different engine is unpredictable.
Examples of works in planning that combined learning ap-
proaches are the work of Durán et. al. (Garcı́a, Fernández,
and Borrajo 2006), PbP (Gerevini, Saetti, and Vallati 2014),
ASAP (Vallati, Chrpa, and Kitchin 2013) and Cedalion

Proceedings of the Eighth International Symposium on Combinatorial Search (SoCS-2015)

35

(Seipp et al. 2015). The first, combines macro-actions with
control knowledge rules for PRODIGY.1 The learning task
consists of finding a set of rules to decide when to use some
previously acquired macro-actions. PbP and ASAP config-
ure a domain-specific portfolio of planners (a single planner
in the case of ASAP), which possibly exploits a reformu-
lated version of the domain model. Finally, cedalion gener-
ates a sequential portfolio of automatically configured plan-
ners.

This paper has its roots in the ideas of combining gen-
eral learning planner-independent techniques for generating
specific heuristics, which has a long history in several fields
of AI (McCluskey 1987; Garcı́a, Fernández, and Borrajo
2006). Part of the appeal of this line of research is that tech-
niques can be studied in isolation, and in combination, in
such a way that the performance change of a planner can be
traced to the effect of a particular learning technique. Our
work is also related to the idea of the modular construction
of planners as espoused by Hertzberg (1995); the benefits of
a modular approach are numerous. Modular techniques are
easier to efficiently develop and to maintain; moreover, new
techniques can quickly be added or exchanged.

This paper’s contributions are: (i) a modular approach to
the construction of planning engines, building on a “vanilla”
search strategy; (ii) adding to this search strategy a combi-
nation of two unrelated learning techniques, namely deci-
sion trees (de la Rosa et al. 2011) and entanglements (Chrpa
and McCluskey 2012), which both acquire domain specific
heuristics from simple training sessions; (iii) a demonstra-
tion of the relative strengths of the techniques, and (iv) a
demonstration of how the techniques can be combined in
order to reach a level of performance comparable to compe-
tition planners.

Our aim is to re-invigorate research into planners which
are made up of modular, interchangeable, and well-founded
components, which learn domain specific heuristics, and
which can be combined to achieve competition winning per-
formance.

This paper is organised as follows. We first provide back-
ground information on classical planning, entanglements
and decision trees. Next, we describe the different ways in
which the techniques can be combined, and we present in de-
tail our experimental analysis and results, followed by con-
cluding remarks and future work.

Background
In this section we provide the relevant background on clas-
sical planning, and we introduce the two modular learn-
ing techniques that will be investigated, namely entangle-
ments (Chrpa and McCluskey 2012) and Roller (de la Rosa
et al. 2011).

Classical Planning
Classical planning deals with finding a partially or totally
ordered sequence of actions transforming the static, deter-

1A planner from the nineties that uses a lifted representation
and performs a kind of bi-directional search.

Figure 1: An illustrative example of outer entanglements.

ministic and fully observable environment from some initial
state to a desired goal state.

In the classical representation atoms are predicates. States
are defined as sets of ground predicates. A planning op-
erator o = (name(o), pre(o), eff−(o), eff+(o)) is speci-
fied such that name(o) = op name(x1, . . . , xk) (op name
is an unique operator name and x1, . . . xk are variable
symbols (arguments) appearing in the operator), pre(o)
is a set of predicates representing operator’s precondi-
tion, eff−(o) and eff+(o) are sets of predicates represent-
ing operator’s negative and positive effects. Actions are
ground instances of planning operators. An action a =
(pre(a), eff−(a), eff+(a)) is applicable in a state s if and
only if pre(a) ⊆ s. Application of a in s (if possible) re-
sults in a state (s \ eff−(a)) ∪ eff+(a).

A planning domain is specified via sets of predicates and
planning operators. A planning problem is specified via a
planning domain, initial state and set of goal atoms. A so-
lution plan is a sequence of actions such that a consecutive
application of the actions in the plan (starting in the initial
state) results in a state that satisfies the goal.

Entanglements
Entanglements (Chrpa and McCluskey 2012) are relations
between planning operators and predicates which aim to
capture the causal relationships characteristic for a given
class of planning problems. Once captured, they are able to
prune unpromising alternatives in the search space. There
are two kinds of entanglements: outer and inner.

Outer entanglements are relations between planning op-
erators and initial or goal predicates. In other words, outer
entanglements say that to solve a given planning problem
some operators can be restricted to be applicable only when
some preconditions are in the initial state or some positive
effects are target goals. In the well-known BlocksWorld do-
main, it can be observed that unstacking blocks only occurs
from their initial positions. In this case an entanglement by
init will capture that if an atom on(a b) is to be achieved
for a corresponding instance of operator unstack(?x ?y)
(unstack(a b)), then the atom is an initial atom. Simi-
larly, it may be observed that stacking blocks only occurs
to their goal positions. Then, an entanglement by goal will

36

capture the constraint that if atom on(b a) is achieved by
a corresponding instance of operator stack(?x ?y) then
(stack(b a)) must be a goal atom. Such an observation is
illustrated in Figure 1.

Encoding outer entanglements is done by introducing sup-
plementary static predicates having the same arguments as
predicates involved in the outer entanglement relations. In-
stances of these static predicates, corresponding to instances
of original predicates in the initial or goal state, are added
to the initial state. For example, if on(a b) is in the initial
state, then static-on(a b) is added to the initial state.
These supplementary static predicates are added into pre-
conditions of operators involved in the outer entanglement
relations, so they allow only such operators’ instances that
follow conditions of outer entanglements.

Inner entanglements are relations between pairs of plan-
ning operators and predicates. Inner entanglements capture
situations where some operator is an exclusive achiever
or requirer of a predicate to or from another operator. In
the Blocksworld domain, it may be observed that opera-
tor pickup(?x) achieves predicate holding(?x) exclu-
sively for operator stack(?x ?y) (and not for operator
putdown(?x)), i.e., pickup(?x) is entangled by succeed-
ing stack(?x ?y) with holding(?x) (for illustration,
see Figure 2 right). Similarly, it may be observed that pred-
icate holding(?x) for operator putdown(?x) is exclu-
sively achieved by operator unstack(?x ?y) (and not by
operator pickup(?x)), i.e., putdown(?x) is entangled by
preceding unstack(?x ?y) with holding(?x) (for illus-
tration, see Figure 2 left).

Encoding inner entanglements into planning domains and
problems must ensure achiever and requirer exclusivity
given by these inner entanglements. It is done by using sup-
plementary predicates, locks, which prevent applying certain
instances of operators in some stage of the planning process.
An instance of an operator having a lock in its precondition
cannot be applied after applying an instance of another op-
erator (locker) having the lock in its negative effects until an
instance of some other operator (releaser) having the lock in
its positive effects has been applied. For example, a situation
where pickup(?x) is entangled by succeeding stack(?x
?y) with holding(?x) is modelled such that pickup(?x)
is the locker for putdown(?x) and stack(?x ?y) is the
releaser for putdown(?x).

Entanglements are extracted from training plans, solu-
tions of simpler problems, in such a way that we check
for each operator/pair of operators and related predicates
whether the entanglement conditions are satisfied in all the
training plans (some error rate might be allowed since train-
ing plans may consist of ‘flaws’ such as redundant ac-
tions). Although applying extracted entanglements might
cause loss of solvability of some non-training problems, it
has been shown empirically that it does not happen (or hap-
pens very rarely) if the structure of the training problems is
similar to the structure of the testing problems. For deeper
insights, see (Chrpa and McCluskey 2012).

Decision Tree Learning with Roller
Roller (de la Rosa et al. 2011) is a learning/planning system
that learns relational decision trees for planning by induc-
tion. These decision trees contain control knowledge that
sort the applicable actions in a given node for state space
search planners. The Roller learning module receives a plan-
ning domain model and a set of training problems as inputs.
Then, it extracts training instances from the search trees gen-
erated to solve training problems. The training instances are
used to train TILDE (Blockeel and De Raedt 1998), an off-
the-shelf relational classification tool that generates decision
trees.

Decision trees are binary trees in which each node repre-
sents a query about a feature expressed as a positive predi-
cate logic literal. The main features considered by Roller are
extracted from the context of a search state. They are: (1)
helpful actions, i.e., whether a particular action is helpful or
not in the current state. Given a state, the set of helpful ac-
tions is computed heuristically and determines the most use-
ful applicable actions. Specifically, helpful actions are those
applicable actions that add a subgoal of the relaxed plan used
to compute the heuristic of the FF planner (Hoffmann and
Nebel 2001); (2) target pending and achieved goals, i.e.,
whether a target goal is pending or achieved in the current
state; and (3) static facts, i.e., whether a fact is defined in the
initial state and no action modifies it.

Roller generates two types of decision trees: operator
trees and binding trees. The leaves of operator trees provide
ordering of applicable operators in a given state, depend-
ing on the features indicated by the path from the root node
to the leaf. Only one operator tree is generated per domain.
Binding trees allow instantiations of each operator (actions)
to be sorted into order. For a domain, Roller generates one
binding tree per operator.

Roller operates in two phases: the learning phase and
the planning phase. In the learning phase, the set of deci-
sion trees for a domain is generated using a set of training
problems. In the planning phase, a state space search al-
gorithm is applied to solve a new problem in that domain.
The base search algorithm is Depth-First Search (DFS) with
chronological backtracking endowed with the helpful ac-
tions heuristic and a strategy to explore first the space gen-
erated by helpful actions. When this base algorithm consid-
ers Roller decision trees, they are used to compute a prior-
ity for each applicable action in every expanded state. Then,
applicable actions are sorted in decreasing priorities and re-
classified as helpful/non-helpful.2 The only actions consid-
ered as non-helpful are those with a priority of zero. The
Roller planning algorithm is the union of both the base al-
gorithm and the mechanisms to sort and re-classify actions
using decision trees (originally this algorithm was called
Depth-first Helpful Context Policy (DHCP) (de la Rosa et
al. 2011)). This is a complete algorithm, since it considers
all applicable actions in every node.

As an example, Figure 3 shows a part of the operator tree
learned in the Depots domain. The branch in bold states that
if there is a helpful action of type load and a helpful action

2Ties are broken arbitrarily.

37

(a) (b)

Figure 2: A motivating example for inner entanglements, concretely entanglements by preceding (a) and by succeeding (b).

selected(-A,-B,-C)
helpful load(A,B,-D,-E,-F,-G) ?
+--yes: helpful lift(A,B,-H,-I,-J,G) ?
| +--yes: nothelpful unload(A,B,-K,-L,-M,-N) ?
| | +--yes: [lift] 6.0
| | [[drive:1.0,lift:3.0,drop:1.0,load:1.0,unload:0.0]]
| | +--no: [lift] 12.0
...

Figure 3: Partial view of the operators tree in Depots.

lift and there is a non-helpful action unload for the cur-
rent state, the operators have to be applied in the order given
by the reached leaf. The number near each operator is the
number of examples covered by the leaf during the training
phase in which the operator was selected (i.e. it belongs to
an optimal solution). This number is used as operator pri-
ority (op priority). For instance, op priority(lift) = 3 ,
while op priority(drive) = 1.

Figure 4 shows part of the bindings tree for the operator
drive in Depots. If an action of type drive matching with
the branch in bold is applicable in the current state, the tree
would recommend to reject it, since its selection ratio is
zero. The selection ratio of each action is computed as:

selection ratio(a) =
selected(a)

selected(a) + rejected(a)

Again, selected(a) (rejected(a)) is the number of exam-
ples covered by the leaf for which the action was selected
(rejected) in training instances.

The global priority of an action a is computed as:

priority(a) = op priority(op(a)) + selection ratio(a)

where op(a) stands for the operator name of a.

Combining Entanglements and Roller
For inductive learning tasks, one of the reasons that justify
the use of a combination of several learning techniques, in-
stead of a single one, is representational (Dietterich 2000).

selected drive(-A,-B,-C,-D,-E,-F)
helpful drive(A,B,C,D,E) ?
+--yes: nothelpful load(A,B,-G,-H,C,D) ?
| +--yes: helpful unload(A,B,-I,-J,C,D) ?
| | +--yes: [rejected] 12.0 [[selected:0.0,rejected:12.0]]
| | +--no: nothelpful lift(A,B,-K,-L,-M,E) ?
| | +--yes: [selected] 20.0 [[selected:18.0,rejected:2.0]]
| | +--no: helpful unload(A,B,-N,-O,-P,-Q) ?
...

Figure 4: Partial view of the bindings tree for the operator
drive in Depots.

It could be the case that the target function cannot be repre-
sented. This is one of the ways in which a learning algorithm
fails. There are also statistical reasons, related with the num-
ber of training problems; and computational reasons, related
with the use of greedy algorithms to generate the model.
However, we focus on the representational issue, since com-
bining entanglements and relational decision trees learnt by
Roller improves this aspect specifically.

The representational ability of Roller’s decision trees de-
pends strongly on the defined features that are included as
queries there. In Roller, these features are related to the con-
text of the current state, defined by (i) the applicable opera-
tors, divided into helpful and not helpful; and (ii) own char-
acteristics of the state: facts in this state that are either static
or achieved/pending target goals

Entanglements represent knowledge of a different nature.
Outer entanglements restrict some operators to be applicable
only when some preconditions are in the initial state or some
positive effects are target goals. Inner entanglements impose
constraints by relating pairs of operators and predicates, so
that some operators are exclusive achievers/requirers of a
predicate to/from other operators. This knowledge does not
depend exclusively on the context of the current state as it is
defined in Roller. Thus, Roller can not represent it.

Given the different nature of the knowledge represented
by entanglements and Roller, it seems that considering both

38

Figure 5: Schemes for the learning phase: E+R (left), R+E (right).

types of knowledge will improve the representational power
of the learnt model. This idea is also supported by the fact
that previous results for both techniques considered sepa-
rately showed they are valuable to guide search algorithms
for solving planning tasks (Chrpa and McCluskey 2012;
de la Rosa et al. 2011).

In this paper, we combine entanglements and decision
trees in a modular way, applying them independently in
sequence. This is possible because entanglements are ex-
pressed by reformulating the planning domain and problem
models. For combining the learning techniques, there are
two possibilities:

1. E+R: Extract entanglements; apply Roller learning over
the reformulated domain model and reformulated training
problems; and then Roller planning with the reformulated
domain using the decision trees learnt for it;

2. R+E: Apply Roller learning over the original domain; ex-
tract entanglements; and then apply Roller planning with
the reformulated domain using decision trees learnt from
the original domain.

Figure 5 shows the learning phase for both integration
schemes. Inputs are a domain model and a set of training
problems.

In the R+E sequence, decision trees are not aware of
entanglements-related knowledge, therefore this combina-
tion is straightforward. In the E+R sequence, the structure
of decision trees is modified because they are learnt from a
reduced search space. Regarding the generated knowledge,
entanglements-related knowledge is incorporated naturally
in decision trees since this knowledge is expressed by means
of domain predicates. These new predicates are considered
by the learning algorithm to be included as queries in deci-
sion trees. In this sense, the representational power of deci-
sion trees increases. The effect of introducing entanglements
enables Roller to create five new entanglements-related fea-
tures. Three of them are related to inner entanglements by
succeeding and two to outer entanglements. Predicates in-
troduced for inner entanglements by preceding do not gen-
erate new features as they are neither target goals nor static
facts.

Predicates introduced in the reformulated domain for in-
ner entanglements by succeeding (o1 generates p exclu-
sively for o2) are represented by a positive literal L =

o1 o2 succ ppred (pargs), where ppred is the predicate
symbol of p, and pargs its lifted arguments. L is included in
the initial state, target goals, and as precondition of all other
operators requiring p but o2 (see (Chrpa and McCluskey
2012) for a detailed explanation). This new predicate en-
ables Roller to formulate new queries related to informa-
tion about previously applied operators with the following
semantics:

• pending goal(L)?: true when the first operator in-
volved in the entanglement has been applied and then the
plan should contain the second operator of that entangle-
ment.

• achieved goal(L)?: true when either any or both op-
erators involved in the entanglement have been applied.

• static fact(L)?: true when there are no correspond-
ing instances of operators for a particular instantiation of
the entanglement (it often happens in a combination with
outer entanglements).

Outer entanglements introduce in the domain new static
facts represented by literals Linit = stai ppred(pargs) or
Lgoal = stag ppred(pargs), meaning that facts with the
form ppred(pargs) should appear at the initial state (entan-
glement by init) or in the goals (entanglement by goal) re-
spectively. These new static facts enable Roller to formulate
the following queries related to the initial state and goals:

• static fact(Linit)?: true when the positive literal
Linit involved in an outer-by-init entanglement belongs
to the initial state.

• static fact(Lgoal)?: true when the positive literal
Lgoal involved in an outer-by-goal entanglement is a tar-
get goal, which in fact is the disjunction of two existing
features: pending target goal or achieved target goal.

These features can be interpreted as being an extension of
Roller’s contexts. Thus, they allow the learning algorithm to
consider more information. When this information is useful
to discriminate among different cases related to the order of
actions/bindings, decision trees will include these features
in queries.

The planning phase is the same for both the considered
learning approaches. In the planning phase inputs are the
original domain model and a problem. In a first step they

39

are reformulated to include entanglements. Then, the Roller
planning algorithm is applied using the decision trees gener-
ated in the learning phase.

Summarising, through this work we derive new heuristics
for planning as to what learning techniques to combine to-
gether. They should be effective in their own right, learning
effective domain-specific heuristics for each domain over a
range of domains and learn distinct concepts. In both (E+R
or R+E), we believe the planning algorithm will perform
better than the individual Roller planning algorithm on the
original domain because entanglements will prune some un-
promising search alternatives for Roller. Hence, in the exper-
imental section we compare both approaches which provides
an idea on how the knowledge in decision trees is affected by
entanglements. Our hypothesis is that the E+R approach is
the better order in which it can ”accumulate” learning power.
We explore this hypothesis empirically in the following sec-
tion.

Experimental Analysis
The experiments in this section are designed to: (i) deter-
mine in which measure the combinations of entanglements
and Roller are stronger than both techniques individually;
and (ii) compare the behaviour of a planning system exploit-
ing them with current state-of-the-art planning techniques.

We considered problem instances from the well-known
benchmark domains used in the learning track of the last
IPC (IPC-7) (Coles et al. 2012): Barman, Blocksworld, De-
pots, Gripper, Parking, Rovers, Satellite, Spanner and TPP.
For each domain, we used the existing 30 benchmark prob-
lems as testing instances. For Roller, we generated an ini-
tial set of 50 training problems per domain, using available
generators from IPC-7. As is usual in learning systems of
this type (de la Rosa et al. 2011; Krajnansky et al. 2014),
the training instances are extracted from solutions to train-
ing problems, so its number varies per domain. Specifically,
learning instances consist of tuples < ci, ai+1 >, where ci
is the context of the state si in the solution path, and ai+1

is the action applied in that state. We set a time-limit of 120
seconds to solve each training problem. Roller learning is
inductive, so the best value for the training parameters for
a domain is unknown. We selected them by experience and
after some trials. A deeper study on the impact of selecting
different values would be interesting, but is out of the scope
of this paper. To extract entanglements we generated 10 ad-
ditional instances. In practice, the whole learning (i.e., off-
line extraction of entanglements and decision trees for all the
considered domains) process required at most few minutes
per domain.

A runtime cutoff of 900 CPU seconds (15 minutes, as
in the learning tracks of IPC) was used for testing runs.
All the experiments were run on 3.0 Ghz machine CPU
with 4GB of RAM. In this analysis, speed and quality
score, as defined in IPC-7, are used. For a planner C and
a problem p, Score(C, p) is 0 if p is unsolved, and 1/(1 +
log10(Tp(C)/T ∗

p)) otherwise. T ∗
p is the minimum time re-

quired by any considered planner to solve the problem. The
quality score is defined as Score(C, p), which is 0 if p is un-
solved, and Q∗

p/Q(Cp) otherwise (Q∗
p ≤ Q(C)p for any C).

Q∗
p is the best plan quality found by any considered planner.

Quality is measured in terms of number of actions. The IPC
score on a set of problems is given by the sum of the scores
achieved on each considered problem.

The base search algorithm can be used as-is, i.e., as a clas-
sical depth-first search with no heuristic, or it can be guided
with a heuristic able to sort applicable actions instead of con-
trol knowledge (decision trees). Without any heuristic, the
base search algorithm solves very few problems. Therefore,
we have selected for comparison the FF approximation to
h+ (FF heuristic), since non-learning forward planners usu-
ally make choices with approximations to h+. Such heuris-
tic estimates the distance to the goal by solving a simpli-
fied planning task where all negative effects (i.e., effects that
make false some predicate) are ignored. We will refer as DF-
CK (Depth-First with Control Knowledge) to the base algo-
rithm with control knowledge (decision trees) and as DF-FF
to the same system using the FF heuristic instead of decision
trees to sort applicable actions.

Firstly, it is important to understand the performance of
DF-FF. For assessing its performance, we compared it with
the state-of-the-art of domain-independent and learning-
based planning; LAMA-11 (Richter, Westphal, and Helmert
2011; Richter and Westphal 2010), Yahsp3 (Vidal 2014) and
PbP2 (Gerevini, Saetti, and Vallati 2009; 2014). LAMA-11
is the winner of the satisficing track of the IPC-7, Yahsp3
won the agile track of the IPC-8, while PbP2 is the winner
of the IPC-7 learning track. The number of solved problems
of DF-FF is very similar to LAMA-11, respectively 57 and
59. On the other hand, both of them are far away from PbP2,
which is able to solve 238 testing problems. Yahsp3 is some-
how in the middle, since it is able to solve 115 instances. It
is worth to know that such testing problems are very large,
in terms of number of objects involved, which make them
hard to handle for most of the existing domain-independent
planners.

In order to evaluate the impact of the considered types of
knowledge, it should be noted that the knowledge extracted
under the form of entanglements and decision trees can be
used separately, i.e., exploiting only one of them for solv-
ing a testing problem, or combined, as stated in the previous
section. When exploiting just entanglements, we use the DF-
FF algorithm. For all the other cases involving decision trees
DF-CK is used. Three different sets of entanglement can be
extracted, namely, inner, outer and both, per domain. The
last set, both, considers all inner and outer entanglements
together.

Table 1 shows the results of all the possible combinations
for each domain. The name of the combination indicates
the order in which the different types of knowledge have
been extracted, i.e., RO indicates a R+E combination that
involves outer entanglements, while OR indicates the cor-
responding E+R one. Results are shown in terms of speed
score and solved problems. The results shown in Table 1
(barman results are omitted since none of the considered
techniques solved any testing instance of that domain) indi-
cate that: (i) both the types of considered knowledge, when
exploited singularly, are usually able to improve the per-
formance of the base algorithm; (ii) there is a strong syn-

40

BW Depots Gripper Parking Rovers Satellite Spanner Tpp Total
RB 15.5 (30) 13.9 (16) 24.1 (29) 25.9 (30) 2.9 (5) 17.1 (18) 29.8 (30) 0.0 (0) 129.2 (158)
RO 3.8 (11) 26.4 (30) 24.1 (29) 29.6 (30) 2.9 (5) 17.1 (18) 29.8 (30) 22.6 (24) 156.3 (177)
RI 0.0 (0) 5.8 (24) 16.0 (25) 25.9 (30) 2.8 (5) 14.6 (16) 29.8 (30) 0.0 (0) 94.8 (130)
BR 29.0 (30) 26.8 (30) 27.6 (30) 21.7 (28) 3.1 (5) 20.0 (20) 29.9 (30) 0.0 (0) 158.1 (173)
OR 26.5 (30) 26.8 (30) 29.0 (30) 29.6 (30) 24.0 (24) 20.0 (20) 29.8 (30) 26.6 (30) 212.1 (224)
IR 13.9 (29) 1.9 (8) 16.0 (25) 21.7 (28) 2.8 (5) 14.6 (16) 29.8 (30) 0.0 (0) 100.7 (141)
B 18.6 (30) 1.4 (6) 0.4 (1) 1.3 (4) 10.1 (20) 0.0 (0) 0.0 (0) 14.0 (20) 45.8 (81)
O 19.6 (30) 18.1 (30) 0.4 (1) 3.0 (9) 10.1 (20) 0.0 (0) 0.0 (0) 22.2 (30) 73.4 (120)
I 0.0 (0) 0.4 (2) 0.0 (0) 1.3 (4) 9.9 (20) 0.0 (0) 0.0 (0) 9.9 (24) 21.4 (50)
R 11.6 (29) 2.2 (9) 16.0 (25) 29.6 (30) 2.8 (5) 14.6 (16) 29.8 (30) 11.4 (23) 117.9 (167)
base 0.4 (2) 0.6 (3) 0.0 (0) 3.0 (9) 9.9 (20) 0.0 (0) 0.0 (0) 9.4 (23) 23.2 (57)

Table 1: Speed score (number of problems solved) of all the combinations of Roller (R) and entanglements (B both, I inner, O
outer); base is DF-FF. The name of the combination indicates the order in which the different types of knowledge have been
extracted. Values in bold indicate the best results, also considering hidden decimals.

ergy between them in most of the benchmark domains; (iii)
their E+R combination usually achieves better performance
than the corresponding R+E one. This confirms our intu-
ition that decision trees endowed with entanglements-related
features learnt from the reduced search spaces contain more
useful knowledge. For instance, the operators tree generated
in Blocksworld for both and inner entanglements is able to
capture information about applying the operators involved in
entanglements by succeeding consecutively. Also, it identi-
fies these cases as the only ones in which the second operator
and any other has to be applied. Thus, the binding trees for
these second operators (stack and putdown) contain only one
leaf node recommending without doubt its selection with
any bindings. In fact, entanglement-related features appear
in decision trees for all domains, which is a sign that they
are relevant. Though in Satellite and Parking they appear in
less measure, only in the bindings tree of one operator.

Moreover, we observed that even if entanglements and de-
cision trees are mainly focused on improving the runtime,
also the quality of resulting plans is usually improved, and
the number of nodes expanded is decreased by several or-
ders of magnitude. Figure 6 shows the quality of solutions
found by all the considered combinations on the Depots test-
ing problems.

On the other hand, while in all the tested domains the
use of both trees and entanglements offers better results than
the use of entanglements alone, there are some domains in
which it does not improve the results of Roller alone. This
is the case of Parking and Spanner. In Spanner, each prob-
lem has a unique solution and the knowledge extracted by
Roller leads the algorithm directly to it, without any room
for improvement. Moreover, the extracted outer entangle-
ments are not very informative, since they prune a part of
the search space that is never explored by the planning en-
gine. No inner entanglements were extracted there. In Park-
ing, only one inner entanglement and no outer ones are ex-
tracted. The extracted entanglement, however, does not im-
prove even against Roller alone, which can be explained by
the fact that features related to this entanglement hardly ap-
pear in decision trees. Parking is the only domain in which
learing Roller from the original models, rather than from re-
formulated ones, usually improves the performance of DF-

 10

 100

 1000

 10000

 100000

 0 5 10 15 20 25 30

c
o

s
t

Problems (Depots)

B
BR

O
OR

I
IR

DFS
Roller

RB
RI

RO

Figure 6: Quality of solutions found on Depots by all the
combinations of Roller (R) and entanglements (B both, I in-
ner, O outer).

CK. In Barman, none of the considered techniques solved
any of the testing instances. This is probably due to the fact
that there is not a common sequence of actions that is useful
for reaching some of the goals and, moreover, considering
all the goals at the same time make the solving process ex-
tremely hard. The best approach is to solve each goal sepa-
rately, but neither Roller nor entanglements can capture this
kind of knowledge.

Finally, we evaluate the effectiveness of the combined au-
tomatically learnt knowledge exploited by DF, with regards
to the state of the art of automated planning. We called such
a system [O]ER: it is the base algorithm that exploits outer
entanglements (whenever available) and Roller, combined
by the E+R approach. We selected outer entanglements be-
cause of their generally good impact on the performance
of the base algorithm.We compared [O]ER with PbP2: it is
learning-based and, as outlined before, its performance is
significantly better than both LAMA-11 and Yahsp3. The
results of this comparison are shown in Table 2. It should
be noted that PbP2 configures different portfolios while

41

Speed score Quality score # Solved
Domain DF [O]ER PbP2nk PbP2 DF [O]ER PbP2nk PbP2 DF [O]ER PbP2nk PbP2
Barman 0.0 0.0 6.7 30.0 0.0 0.0 22.5 30.0 0 0 23 30
BW 0.4 30.0 4.3 11.4 0.0 29.6 11.9 29.3 2 30 17 30
Depots 0.6 30.0 2.0 8.0 0.0 17.8 7.2 24.7 3 30 8 27
Gripper 0.0 22.7 10.3 30.0 0.0 30.0 18.6 27.9 0 30 23 30
Parking 2.7 30.0 0.0 2.8 2.2 29.6 0.0 4.6 9 30 0 8
Rover 7.3 15.9 9.8 27.4 15.0 15.3 15.7 29.0 20 24 17 28
Satellite 0.0 7.2 4.7 30.0 0.0 15.3 9.6 29.1 0 20 11 30
Spanner 0.0 23.7 5.3 30.0 0.0 30.0 13.0 30.0 0 30 13 30
TPP 10.3 29.5 2.2 15.0 22.0 16.9 9.4 14.4 23 30 8 25
Total 21.4 189.0 45.3 184.6 39.2 184.5 108.0 219.0 57 224 120 238
∆ Score 167.6 139.3 145.3 111.0 167 118

Table 2: Speed score, Quality score and number of problems solved by the proposed approach and PbP, with and without the
automatically learned knowledge. PbP2nk indicates PbP2 the does not exploit the extracted knowledge. DF indicates DF-FF.

optimising for speed or quality, for the number of solved
problems we considered the largest one. We compared both
systems with and without the extracted knowledge, in or-
der to evaluate the overall performance, in terms of speed,
quality and coverage, and also to understand the impact of
the knowledge on the respective systems. [O]ER solves less
problems than PbP2, but its Speed score is slightly better.
From the quality point of view, PbP2 achieves a better score.
This is mainly due to the fact that [O]ER is not able to solve
any problem in Barman. It is worth mentioning that the only
planner included in PbP2 that is able to solve testing in-
stances of barman is SGPlan5 (Chen, Wah, and Hsu 2006),
which is based on a partition-and-resolve strategy. Interest-
ingly, in TPP DF-FF achieves the best quality score. The FF
heuristic works well in this model. On the other hand, the
knowledge exploited by [O]ER is aimed at finding a solution
quickly, by sorting the applicable actions (decision trees)
and pruning the search space (entanglements). In fact, in the
TPP domain, the speed score of [O]ER is significantly in-
creased; however, this leads to lower quality plans.

Regarding the usefulness of the knowledge extracted, de-
cision trees and entanglements have a substantial impact on
all the considered metrics, as indicated by the delta between
the scores of DF-FF and [O]ER. Moreover, such deltas are
always bigger than PbP2 ones, thus we can argue that the
quality of the combined knowledge exploited by [O]ER is
very good.

Conclusion
Automated planning is an area with a rich spectrum of pos-
sibilities to apply machine learning. It provides a setting that
allows the definition of many different learning tasks that
can be exploited together with the general objective of opti-
mizing the search to improve planners’ performance.

The trend for the last decade for improving planners’ per-
formance has been in developing complex techniques merg-
ing different strategies, which makes it difficult to study and
understand the planners’ behaviour. In this paper we com-
bined two learning techniques, and exploited a modular ap-
proach in order to facilitate the analysis of the impact of each
individual component. We believe this can contribute to the

research of planners designed by modular, interchangeable,
and well-founded components. Specifically, we combined
two previously unrelated learning techniques, entanglements
and relational decision trees, to guide a “vanilla” search al-
gorithm.

A large experimental analysis demonstrated the effective-
ness of the approach. From the machine learning perspec-
tive, the combination produces more useful knowledge than
the application of both techniques separately, which is re-
flected in the behaviour of the planner. From the planning
perspective, we obtained competitive performance against
PbP2, the winner of the last IPC learning track. This result is
significant: PbP2 is a portfolio that includes several state of
the art planners, while [O]ER is based on a single heuristic
search algorithm.

For the future work, we plan to include more learning
modules such as macro-operators learning and a wider ex-
perimental analysis involving different planning techniques.
We are also interested in investigating techniques – based
on empirical predictive models (Hutter et al. 2014) – for au-
tomatically selecting and combining learning modules, ac-
cordingly to the performance of the exploited planner.

Acknowledgements
This work has been partially supported by the Spanish
project TIN2011-27652-C03-02. The research was funded
by the UK EPSRC Autonomous and Intelligent Systems
Programme (grant no. EP/J011991/1).

References
Betz, C., and Helmert, M. 2009. Planning with h+ in theory
and practice. In KI 2009: Advances in Artificial Intelligence,
volume 5803 of Lecture Notes in Computer Science, 9–16.
Blockeel, H., and De Raedt, L. 1998. Top-down induction
of first-order logical decision trees. Artificial Intelligence
101(1-2):285–297.
Botea, A.; Enzenberger, M.; Mller, M.; and Schaeffer, J.
2005. Macro-FF: Improving AI planning with automatically
learned macro-operators. Journal of Artificial Intelligence
Research (JAIR) 24:581–621.

42

Cenamor, I.; De La Rosa, T.; and Fernández, F. 2013. Learn-
ing predictive models to configure planning portfolios. In
ICAPS Workshop on Planning and Learning (PAL 2013),
14–22.
Chen, Y.; Wah, B. W.; and Hsu, C.-W. 2006. Temporal plan-
ning using subgoal partitioning and resolution in SGPlan.
Journal of Artificial Intelligence Research (JAIR) 26:323–
369.
Chrpa, L., and McCluskey, T. L. 2012. On exploiting struc-
tures of classical planning problems: Generalizing entangle-
ments. In Proceedings of the European Conference on Arti-
ficial Intelligence (ECAI), 240–245.
Chrpa, L.; Vallati, M.; and McCluskey, T. L. 2014. MUM: A
technique for maximising the utility of macro-operators by
constrained generation and use. In Proceedings of the Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS), 65–73.
Coles, A.; Coles, A.; Olaya, A. G.; Jiménez, S.; Linares, C.;
Sanner, S.; and Yoon, S. 2012. A survey of the seventh
international planning competition. AI Magazine 33:83–88.
Cresswell, S.; McCluskey, T. L.; and West, M. M. 2009.
Acquisition of object-centred domain models from planning
examples. In Proceedings of the International Conference
on Automated Planning and Scheduling (ICAPS), 338–341.
de la Rosa, T.; Jiménez, S.; Fuentetaja, R.; and Borrajo, D.
2011. Scaling up heuristic planning with relational deci-
sion trees. Journal of Artificial Intelligence Research (JAIR)
40:767–813.
Dietterich, T. G. 2000. Ensemble methods in machine
learning. In Multiple classifier systems, LBCS-1857, 1–15.
Springer.
Garcı́a, R.; Fernández, F.; and Borrajo, D. 2006. Combining
macro-operators with control knowledge. In Otero, R., ed.,
Proceedings of International Conference on Inductive Logic
Programming (ILP’06), volume 4455 of Lecture Notes on
Artificial Intelligence, 229–243. Santiago de Compostela
(Spain): Springer Verlag.
Gerevini, A.; Saetti, A.; and Vallati, M. 2009. An auto-
matically configurable portfolio-based planner with macro-
actions: PbP. In Proceedings of the 19th International Con-
ference on Automated Planning and Scheduling (ICAPS),
19–23. AAAI Press.
Gerevini, A.; Saetti, A.; and Vallati, M. 2014. Plan-
ning through automatic portfolio configuration: The pbp ap-
proach. Journal of Artificial Intelligence Research (JAIR)
50:639–696.
Hertzberg, J. 1995. On building a planning tool box. In New
Directions in AI Planning, 3–18.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research (JAIR) 14:253–302.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
landmarks in planning. Journal of Artificial Intelligence Re-
search (JAIR) 22:215–278.
Hutter, F.; Xu, L.; Hoos, H. H.; and Leyton-Brown, K. 2014.

Algorithm runtime prediction: Methods & evaluation. Arti-
ficial Intelligence 206:79 – 111.
Jiménez, S.; De la Rosa, T.; Fernández, S.; Fernández, F.;
and Borrajo, D. 2012. A review of machine learning for
automated planning. The Knowledge Engineering Review
27(04):433–467.
Jimoh, F.; Chrpa, L.; McCluskey, T.; and Shah, S. 2013.
Towards application of automated planning in urban traffic
control. In Intelligent Transportation Systems - (ITSC), 2013
16th International IEEE Conference on, 985–990.
Krajnansky, M.; Buffet, O.; Hoffmann, J.; and Fern, A.
2014. Learning pruning rules for heuristic search planning.
In Proceedings of the European Conference on Artificial In-
telligence (ECAI).
McCluskey, T. L. 1987. Combining weak learning heuristics
in general problem solvers. In Proceedings of the 10th Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
331–333.
Parkinson, S.; Longstaff, A.; and Fletcher, S. 2014. Au-
tomated planning to minimise uncertainty of machine tool
calibration. Engineering Applications of AI 30:63–72.
Porteous, J.; Cavazza, M.; and Charles, F. 2010. Applying
planning to interactive storytelling: Narrative control using
state constraints. ACM Transactions on Intelligent Systems
and Technology (TIST) 1(2):10.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research (JAIR) 39:127–177.
Richter, S.; Westphal, M.; and Helmert, M. 2011. LAMA
2008 and 2011. In Booklet of the 7th International Planning
Competition.
Roberts, M., and Howe, A. E. 2009. Learning from planner
performance. Artificial Intelligence 173(5-6):536–561.
Seipp, J.; Sievers, S.; Helmert, M.; and Hutter, F. 2015. Au-
tomatic configuration of sequential planning portfolios. In
Proceedings of the Twenty-fourth National Conference on
Artificial Intelligence (AAAI’15).
Vallati, M.; Chrpa, L.; and Kitchin, D. 2013. An automatic
algorithm selection approach for planning. In Tools with Ar-
tificial Intelligence (ICTAI), 2013 IEEE 25th International
Conference on, 1–8. IEEE.
Vidal, V. 2014. YAHSP3 and YAHSP3-MT in the 8th inter-
national planning competition. In The 8th IPC. Description
of Planners of the Deterministic Part, 64–65.
Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action mod-
els from plan examples using weighted MAX-SAT. Artifi-
cial Intelligence 171(2-3):107–143.
Yoon, S. W.; Fern, A.; and Givan, R. 2008. Learning control
knowledge for forward search planning. Journal of Machine
Learning Research 9:683–718.

43

