

TEACHING				
1st Cycle and Integrated Master Courses	And I have been a second			
(15 000 Students)	Industrial Flashering and Operating Frazing and			
(10000000000)	Industrial Electronics and Computers Engineering			
Accounting	Industrial Management and Engineering			
Applied Biology	Information Systems and Technologies			
Applied Languages	International Business			
Applied Mathematics	International Belations			
Applied Matisfination				
Archaeology	Management			
Architecture	Marketing			
Basic Education	Materials Engineering			
Biochemistry	Mathematics			
Biological Engineering	Mechanical Engineering			
Biology-Geology	Medicine			
Biomedical Engineering	Music			
Chemistry	Nursing			
Civil Engineering	Optometry and Vision Sciences			
Communication Sciences	Oriental Languages and Culture			
Communications Engineering	Philosophy			
Computer Science	Physics			
Cultural Studies	Physics and Chemistry			
Environmental Sciences	Political Science			
Economics	Polymer Engineering			
Education	Portuguese and Lusophone Studies			
European Languages and Literatures	Psychology			
Fashion Design and Marketing	Public Administration			
Geography	Slavic Languages and Cultures *			
Geology *	Sociology			
History	Textile Engineering			
	Dept. Polymer Engineering			
	University of Minho			

MOTIVATION

SENSITIVITY ANALYSIS

A sensitivity analysis is generally used to quantify the relationship between variations of the parameters to optimize (independent variables) and variations of the objective function (dependent variables).

$$F(x) = G(f(x), x) \qquad \nabla F(x) = \frac{DF}{Dx}(x) = \frac{DG}{\partial f}(f(x), x)\frac{Df}{Dx}(x) + \frac{DG}{\partial x}(f(x), x)$$

Once this sensitivity is known, the effects of a variation of the parameter δx on the objective function can be estimated using e.g. finite differences (forward differences):

$$\frac{DF}{Dx}(x) = \frac{F(x+\delta x) - F(x)}{\delta x}$$

Dept. Polymer Engineering University of Minho

MOTIVATION					
The role of optimisation is to find the best set of parameters that optimise an objective function, particularly by improving the performance in the direction of some optimal point or points:					
$\begin{array}{ll} \text{maximise}_{\mathbf{x}\in\Omega} & f(x_i) & i = 1, \dots, n \\ \text{subject to} & g_j(x_i) \ge 0 & j = 1, \dots, J \\ & h_k(x_i) = 0 & k = 1, \dots, K \end{array}$					
where <i>x</i> is a vector of <i>n</i> and $\Omega \subset \Re^n \left(\Omega = \left\{ x \in \Re^n : l \le x \le u \right\} \right)$					
<i>f</i> is the objective function of the <i>n</i> parameters x_i , g_j are the <i>J</i> (<i>J</i> ≥0) inequality constraints, and <i>k</i> are the <i>K</i> (<i>K</i> ≥0) equality constraints.					
Dept. Polymer Engineering University of Minho	<				

EVOLUTIONARY THEORY

Evolutionary Theory

The evolutionary theory allows to explain that this slow change of genetic material through reproduction and mutation (and possibly crossover) enabled the possibility of generating all species of plants and animals

Dept. Polymer Engineering

University of Minho

×

SCHEMA THEOREM
Definition 2 – Schema Order, o(H): Schema order, o(.), is the number of non '*' genes in schema H. Example, o(* * * 0 * * *) = 1
Definition 3 – Schema Defining Length, $\delta(H)$: Schema Defining Length, $\delta(H)$, is the distance between first and last non '*' gene in schema H. Example , $\delta(***0***) = 4 - 4 = 0$
Dept. Polymer Engineering University of Minho

APLICATION EXAMPLE							
GRAY CODE							
	Decimal	Binary	Gray Code				
	0	000	000				
	1	001	001				
	2	010	011				
	3	011	010				
	4	100	110				
	5	101	111				
	6	110	101				
	7	111	100				
Gray codes have the property that adjacent integers only differ in one bit position.							
				Dept. Polymer Engineering University of Minho			

