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Cost

C
o
m

fo
rt

11 000€ 250 000€

30%

90%

Most real optimization problems are multi-objective

Example: Simultaneous minimization of the cost and maximization 

of the performance (comfort)  when buying a car

CONCEPTS AND DEFINITIONS

Single optimum

(maximizing the

performance)

Single optimum

(minimizing the cost)

Multiple optima

(optimizing both

objectives)
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A partial order is a binary relation "≤" over a set P which

is reflexive, antisymmetric, and transitive, i.e., for all a, b, and c in P, we

have that:

a ≤ a (reflexivity);

if a ≤ b and b ≤ a then a = b (antisymmetry);

if a ≤ b and b ≤ c then a ≤ c (transitivity).

In other words, a partial order is an antisymmetric preorder.

A partial order under which every pair of elements is comparable is called

a total order.

Optimization Problem

CONCEPTS AND DEFINITIONS
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Optimisation problem is an abstract problem where each instance is a 

pre-order  on the space of problem of solutions S.

An element of S is a solution of a problem instance if and only if it is a 

minimal element of S under the corresponding pre-order (alternatively, 

maximal).

For example,              means that x1 is at least as good as x2

Assuming minimisation, the pre-order       can be defined as:

( ) ( ) Sxxxfxfxx ∈∀≤⇔ 212121 ,,p

p

21 xx p

p

Optimization Problem

CONCEPTS AND DEFINITIONS
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Indifference of solutions - two solutions are indifferent if:

( ) ( ) Sxxkixfxfxx ii ∈∀=∀≤⇔ 212121 ,,,...,1,p

1221 xxxx pp ∧

Optimization Problem

CONCEPTS AND DEFINITIONS

For k objective functions (as is the case of multi-objective optimization):

Incomparable solutions - if the following condition holds the solutions 

are incomparable: 1221 xxxx pp /∧/

pThus, it is possible to say that the relation      is a partial pre-order.
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Single versus Multi-Objective

Single objective optimization is a particular case of multi-

objective optimization (and not the opposite).

CONCEPTS AND DEFINITIONS

Cost

C
o
m

fo
rt

11 000€ 250 000€

30%

90%

Single Objective

Total Order

Single Optimum

Multiple Objectives

Partial Pre-Order

Multiple Optima
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• Single optimum versus multiple optima

• Multi-objective requires both, search and decision-making

• There are two spaces of interest, instead of one

Single versus Multi-Objective

CONCEPTS AND DEFINITIONS

x1

x
2

f1

f 2
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f1

f2

Pareto optimal (solutions 

non-dominated)

Dominated

better

worst

indifferent

indifferent

f1

f2

Non-Dominance Concept

CONCEPTS AND DEFINITIONS

( ) ( )ii xfxf 21 ,maximize
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Non-Dominance Concept

CONCEPTS AND DEFINITIONS

z*

f1

f2

znadir

z**

z* - Ideal point: does not exist,

upper bound of Pareto-optimal set

(maximization)

z**- Utopian point: also, does not

exist

znad- Nadir point: upper bound on

Pareto-optimal set (maximization)
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where fl are the M objective functions of the n parameters

xi, and gj and hk are the J equality (J≥0) and K inequality

(K≥0) constraints, respectively

Multi-Objective Optimization Problem

CONCEPTS AND DEFINITIONS
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Definition: A solution x(1) is said to dominate the other solution x(2) (or 

mathematically  x(1) x(2)), if both conditions 1 and 2 are true:

1. The solution x(1) is no worst than x(2) in all objectives, or fj(x
(1))    fj(x

(2)) 

for all j = 1, 2, ..., M.

2. The solution x(1) is strictly better than x(2) in at least one objective, or 

fj(x
(1))    fj(x

(2)) for at least one j    {1, 2, ...,M}.

>

< ∈

p

Definition (Non-dominated set): Among a set of solutions P, the non-

dominated set of solutions P’ are those that are not dominated by any

member of the set P.

Non-Dominance Definition

CONCEPTS AND DEFINITIONS

Minimization case
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Non-Dominance Definition

CONCEPTS AND DEFINITIONS

Minimization case
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Non-Dominance Definition

CONCEPTS AND DEFINITIONS

Minimization case
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f1

f2

z1

z2 z4

z3

Examples of dominance relations on objective vectors

CONCEPTS AND DEFINITIONS
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Minimization case
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Decision making

CONCEPTS AND DEFINITIONS

f1

f2
Pareto Optimality (a set of optimal

trade-offs, all objectives have

equal importance)

Decision Making (choose the best

compromise based on preference

information)
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� Decision making is the process of selecting a single solution

among alternatives.

� Use additional preference information to “complete” the partial

pre-order => choosing among incomparable solutions.

� The original problem formulation does not contain any type of

preference information. Thus it is not known by the EA.

� This information must be provided by a Decision Maker:

• A priori: decision making before the search (single objective);

• A posteriori: decision making after the search (multiple solutions are

found);

• Progressively: decision making during the search;

• Combination of the above.

Decision making

CONCEPTS AND DEFINITIONS
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Historical Perspective (only some examples)

Schaffer (1985) – VEGA

Kursawe (1990) –VOES

Fonseca and Fleming (1993) – MOGA

Srinivas and Deb (1994) – NSGA

Horn, Nafpliotis and Goldberg (1994) – NPGA

Zitzler and Thiele (1999) – SPEA, (2001) – SPEA2

Deb and co-authors (2000) – NSGA-II

Knowles and Corne (2000) – PAES, PESA

First algorithms

Classic algorithms

Elitist algorithms

CARACTERÍSTICAS
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Historical Perspective (only some examples)

Fleisher (2003) – Simulating Annealing

Zitzler and Künzli, (2004) – IBEA 

Emmerich et al. (2005) – SMS-EMOA

Zitzler et al. (2008) – SPAM 

CARACTERÍSTICAS

Algorithms 

incorporating 

preferences 

concerning the 

solutions 
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1- In a first step the EAs were used to find single solutions by:

• Using traditional aggregating function approaches

• A priori articulation of preferences

2- In a subsequent step EAs were used to get an approximation

of the Pareto-optimal front as whole (MOEAs):

• All objective are optimized simultaneously

• EAs can use comparisons directly (including Pareto-dominance)

• Not considering preferences makes the problem formulation

simpler

• A posteriori articulation of preferences

• Solve many problems in one optimisation run

Practical Resolution

CLASSICAL METHODS
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Aggregation Methods

CLASSICAL METHODS
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CLASSICAL METHODS

Aggregation Methods
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CLASSICAL METHODS

Aggregation Methods

Multi-Objective 

Optimization 

Problem:

Maximize: 

f1, f2,:,fn

Preference 

information: 

w1, w2, :, wn

Single objective 

Optimization 

Problem:

∑
=

=
n

i

ii fwF
0

Max

Single objective 

optimizer

f1

f2
Single solution
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Limitations of the Objective Function Approach

Advantages:

• Easy to implement

• Suitable for convex multiple 

optima surfaces

Disadvantages:

• Difficulties with mixed (simultaneous

maximization and minimization) and non-

convex problems

• Different weights can yield the same optimum

• When the relative weights change, a new

optimization run needs to be carried out

C1

C
2

Feasible search space

w2

w1

C1

C
2

Feasible search space

CLASSICAL METHODS
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• Constrain all but one objective

• Need to know relevant ε vectors

• Non-uniformity in Pareto-optimal 

solutions

• However, any Pareto-optimal 

solution can be found with this 

approach

CLASSICAL METHODS

f1

f2

A

B
C

ε2
C

ε2
B

ε2
A

( )
( ) ε≥xftosubject

xf

2

1 ,Maximize

ε-Constraint Method
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Step 2: Select a single solution

EMO METHODS

Multi-Objective Optimization

Multi-Objective 

Optimization 

Problem:

Maximize: 

f1, f2,:,fn

Preference 

information.

Multi-objective 

optimizer

f1

f2
Single solution

f1

f2
Multiple solutionsStep 1: Find the Pareto-optimal solutions
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Advantages of a posteriori approach:

• No interaction with the decision maker is needed

• The preference information is not required

• The decision maker may learn from the Pareto-front approximation

• Disadvantages:

• Computationally demanding

• No interaction with the decision maker is allowed

• The eventual existence of preference information is not used

• These algorithms are based on some implicit preferences

• In practice, most of the Pareto-front found may be irrelevant

• The approximation quality in the region of interest may be insufficient

EMO METHODS

Advantages and Disadvantages
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University of Minho

Pareto ranking:

• Non-dominated individuals are best (assign cost 0)

• Assigning cost to other individuals is more subjective

• Dominance rank vs. dominance depth (or non-

dominated sorting) vs. dominance Strength

EMO METHODS

Preferences articulation
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EMO METHODS

Dominance depth versus Dominance rank 

Preferences articulation
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Some preference information is usually available :

• Weights

• Reference directions

• Goals

• Ideal values to be approached as much as possible

• Engineering specifications to be met or improved upon 

• Priorities

EMO METHODS

Preferences articulation
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EMO METHODS

Preferences articulation
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1. All aggregations of the objectives:

• Weighted sum, minimax, . . .

• Goal programming variants (goal + reference direction)

• Other comparison operators

• Guided dominance (Branke et al. 2001), lexicographic order

2. Other MCDM techniques:

• ELECTRE (Benayoun, 1966), PROMETHEE (Brans and Vinke, 1985), 

GRIP (Figueira et al., 2009), etc.

Challenge:

• Allow the DM to state its preferences easily

EMO METHODS

Preferences articulation
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MULTIOBJECTIVE 

OPTIMISATION

Start

Initialise Population

Evaluation

Assign Fitness

Fi

Convergence

criterium 

satisfied?
Reproduction

Crossover

Mutation

i=i+1

Stop

no

yes

i=0

A

EMO METHODS

Dept. Polymer Engineering
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Basic functions of a MOEA:

1. Guiding the population

towards the Pareto set:

Fitness assignment

f1

f2

1

EMO METHODS
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Basic functions of a MOEA:

1. Guiding the population

towards the Pareto set:

Fitness assignment

f1

f2

1
2. Maintaining a diverse

nondominated set

Density estimation

2

EMO METHODS
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Basic functions of a MOEA:

1. Guiding the population

towards the Pareto set:

Fitness assignment

f1

f2

1
2. Maintaining a diverse

nondominated set

Density estimation

2

3. Preventing nondominated 

solutions from being lost

Elitist population (archiving)

Archive3

EMO METHODS
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Basic functions of a MOEA:

1. Guiding the population

towards the Pareto set:

Fitness assignment

f1

f2

1
2. Maintaining a diverse

nondominated set

Density estimation

2

3. Preventing nondominated 

solutions from being lost

Elitist population (archiving)

Archive3

EMO METHODS

Dept. Polymer Engineering

University of Minho

TRADITIONAL MOEAs:

• Schaffer (1985) – VEGA

• Fonseca and Fleming (1993) – MOGA

• Horn, Nafpliotis and Goldberg (1994) – NPGA

• Srinivas and Deb (1995) – NSGA

1

C1

C2

1
2

1

32

2

3Front 1

Front 2

Front 3

Step 1- Ranking Function

FO(Front 1)>FO(Front 2)>FO(Front 3)

FO
FO

mi

i

i

′ =
′

Step 2- Sharing

EMO METHODS
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1

C1

C2

2
3

1

C1

C3

2
3

Dificulty with the traditional MOEAs

If only criteria 1 and 2 are considered, point 3 is dominated.

If criterion 3 is also considered point 3 is non-dominated

EMO METHODS
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Non-Elitist EMO Procedures

• Vector evaluated GA (VEGA) (Schaffer, 1984)

• Vector optimized EA (VOES) (Kursawe, 1990)

• Weight based GA (WBGA) (Hajela and Lin, 1993)

• Multiple objective GA (MOGA) (Fonseca and Fleming, 1993)

• Non-dominated sorting GA (NSGA) (Srinivas and Deb, 1994)

• Niched Pareto GA (NPGA) (Horn et al., 1994)

• Predator-prey ES (Laumanns et al., 1998)

EMO METHODS
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Elitist EMO Methods

• Distance-based Pareto GA (DPGA) (Osyczka and Kundu, 1995)

• Thermodynamical GA (TDGA) (Kita et al., 1996)

• Strength Pareto EA (SPEA) (Zitzler and Thiele, 1998)

• Non-dominated sorting GA-II (NSGA-II) (Deb et al., 1999)

• Pareto-archived ES (PAES) (Knowles and Corne, 1999)

• Multi-objective Messy GA (MOMGA) (Veldhuizen and Lamont, 

1999)

• Other methods: Pareto-converging GA, multi-objective micro-GA, 

elitist MOGA with co-evolutionary sharing

EMO METHODS
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EMO METHODS

Nondominated Sorting Genetic Algorithm (NSGA-II):

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal and T. Meyarivan

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 2, APRIL 2002
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Nondominated Sorting Genetic Algorithm (NSGA-II)

Order of the NSGA -II: O(N logM-1 N)

NSGA - II

Non-Dominated 

Sorting
Crowding distance

Pt

Qt

F1

F2

F3

Pt+1

Rejected

Dept. Polymer Engineering

University of Minho

NSGA - II

Global Algorithm
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NSGA - II

Fast non-dominated sort

Dept. Polymer Engineering

University of Minho

NSGA - II

Crowding distance assignment
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Reduced Pareto Set Genetic Algorithm (RPSGA):

A. Gaspar-Cunha, P. Oliveira and J.A. Covas, ICGA´97 (1997)

RPSGA
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Reduced Pareto Set Genetic Algorithm (RPSGA):
A. Gaspar-Cunha, P. Oliveira and J.A. Covas, ICGA´97 (1997)

Start

Define the number 

of ranks, Nranks

Rank(j)=0, for all 

the N individuals

r=1

Rank(i)=0

Rank(i)=NR

Fi=f(Rank(i)),

using a ranking function

Stop

i<N

i=i+1

yes

no

i=1

r<Nranks

Rank(i)=0

Rank(i)=r

i<NR

i=i+1

r=r+1

no

yes

yes

no

yes no

NR=r(N/Nranks)

Reduce the population 

to NR individuals, using 

a clustering algorithm

i=1

yes

no

RPSGA
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C1

C2

1

1

1

1

1

C1

C2

1

1

1

1

1

2

2
2

2

2

N=15; Nranks=3

r=1; NR=5 r=2; NR=10

Reduced Pareto Set Genetic Algorithm (RPSGA):

RPSGA
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Reduced Pareto Set Genetic Algorithm (RPSGA)

C1

C2

1

1

1

1

1

2

2

2

2

2

3

3

3

3

3

( )( )
FO SP

SP N i

Ni = − +
− + −

2
2 1 1

Ranking linear:

FO(1) = 2.00

FO(2) = 1.87

FO(3) = 1.73

RPSGA
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( )( )
FO SP

SP N i

Ni = − +
− + −

2
2 1 1

FO
c

c
ci N

N i=
−
−

−1

1

where N is the number of population individuals, FOi is the

objective function value for individual i, SP is the selection pressure

(1.0 < SP ≤ 2.0) and c is a constant that controls the selection

pressure on the exponential ranking (0<c<1).

RPSGA

Rank functions

Linear

Exponential
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RPSGA with Elitism (RPSGAe)

Generation 1

Generation 2

Generation 3

Generation 4

Generation 5

Generation n

Internal 

population

External

population

Internal

population

(Generation n)

External

population

(Generation n)

3*N/Nranks

2*N/Nranks

Order of the RPSGAe: O(Nranks q N2)

RPSGA
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How the basic functions are accomplished in the RPSGAe :

1. Guiding the population towards the Pareto set

Fitness assignment: ranking function based on the

reduction of the Pareto Set

2. Maintaining a diverse nondominated set

Density estimation: ranking function based on the reduction

of the Pareto Set

3. Preventing nondominated solutions from being lost

Elitist population: periodic copy of the best solutions (to the

main population), selected with the method of Pareto set

reduction

RPSGA

Dept. Polymer Engineering

University of Minho

Algorithm Parameters:

• Number of ranks (Nranks) [10;20;30,50,70]: Strong effect

• Density operator [Clustering, Sharing]: Weak effect

• Indifference limits of the clustering algorithm: [0.1,0.2;0.3;0.4;0.5]: Weak effect

• Type of ranking function (N) [linear; exponential]: Weak effect

• Size of the internal population (N) [100;200;300]: Weak effect

• Size of the external population (Ne) [100;200;300]: Weak effect

RPSGA
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OPTIMIZAÇÃO MULTI-OBJECTIVO COM EAs – Desempenho

PERFORMANCE METRICS

C1

C
2

Ideal

set

C1

C
2

Good

convergence

Bad

distribution

C1
C
2

Bad

convergence

Good

distribution

C1

C
2

Feasible

search 

spacePareto

optimal

front
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Reduced Pareto Set Genetic Algorithm (RPSGA)

APPLICATION EXAMPLE

Bi-objective problems to be minimized
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Test problems:
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1- SPH-2; 2- SPH-3: xi ∈∈∈∈[-103, 103]

3- ZDT6: xi ∈∈∈∈[0, 1]

Algorithm parameters:

• Number of variables (m): 100

• Size of the internal population (N): 100

• Size of the external population (Ne): 100

• Number of ranks (Nranks): 30

• Indifference limits (limit): 20%

• Number of evaluations of the objective 

function: 500,000
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4- QV: xi ∈∈∈∈[-5, 5]

APPLICATION EXAMPLE
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NEW MOEAs WITH ELITISM:

• Zitzler and Thiele (1999) – SPEA

• Deb and co-authors (2000) – NSGA-II

• Corne, Knowles and Oates (2000) – PESA 

• Zitzler and Thiele (2001) – SPEA2

APPLICATION EXAMPLE
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Comparative study:

• Statistical comparison analysis

• 30 runs for each problem using different seed values

Results (for each algorithm):

1. Percentage of the Pareto frontier in which the algorithm is not beaten by the others

2. Percentage of the Pareto frontier in which the algorithm beats all the others

 PESA NSGA-II SPEA2 RPSGAe 

SPH-2 [0; 0] [0; 0] [0; 0] [100; 100] 

SPH-3 [0; 0] [0; 0] [0; 0] [100; 100] 

ZDT6 [0; 0] [43.5; 0.1] [43.3; 0] [56.6; 56.5] 

QV [35.3; 31.5] [29.1; 7.3] [61.2; 35.9] [0; 0] 
 

Zitzler, E., WEB page http://www.tik.ee.ethz.ch/~zitzler/testdata.html

APPLICATION EXAMPLE
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In most optimisation problems it is necessary not only to find the 

overall optimum, but also to identify the various local optima. 

Conventional GAs are not able to do this, since they converge 

necessarily to one point of the overall search space [GOL 89a].
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If GAs are applied repeatedly to determine of the maximum of the first

function, they converge indifferently to any single peak. This happens

because the population cannot have an infinite dimension, as assumed by

the schemata theory. The problem is designated by “genetic drift” and can

cause the accumulation of errors as the search proceeds [GOL 87].

However, convergence to a single peak is not desirable in functions with

various similar maxima. Generally, when the search space has local

maxima with different values, it will be interesting that convergence occurs

to the peak with the greatest value, but also that a determined number of

individuals converge for each individual peak. This is particularly important

in the case of complex functions, as it provides the characterisation of their

topography.
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In order to deal with the above, the concepts of niching and speciation

of natural evolution should be introduced in a population of

chromosomes. This is based on the idea of forming stable populations

of organisms by creating separated niches where they are forced to

share the available resources [GOL 87, DEB 89].
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sharing function, Sh(dij), where α is a constant and σshare is the

radius of a circumference defining the maximum distance between

chromosomes, in order to form as many niches as the number of

peaks on the search space.
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This figure illustrates this concept. The function

f1(x) has 5 maxima in the search space (0≤x≤1).
The niche size is given by the ratio between the

size of the search space and the number of peaks,

i.e., 1/5=0.2; consequently, σshare is 0.1.
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Since the basic idea of sharing is that the objective function of an

individual diminishes in the presence of its neighbours, the final

objective function value (FO´i) will result from the ratio between

the initial evaluation (FOi) and its niche count (m´i).

FO
FO

mi

i

i

′ =
′ ′ =

=
∑m sh di i j
j

N

( )
1

where m´i is the sum of all the sharing functions related to this 

individual.

The sharing function with himself [sh(dii )=1] will be also 
included.
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The distance between individuals can be determined in the real

parameter space, (phenotypic sharing) or in the codified space

(genotype sharing). The former will be adopted, since it has

physical meaning and greater performance (according to Deb [DEB

89]). Two individuals (Xi e Xj) on a p dimensional space can be

defined as:
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[ ]
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The distance between them (dij) can be defined using the norm on a p

dimensional space, using the Euclidean distance.
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• Since in most optimisation problems the number of peaks is

unknown, the use of the above methodology to define the value

of σshare, implies the use of a trial and error procedure.

• Sharing can be indistinctly applied in the space of the variables to

optimise, or in the criteria space, depending on which niching is

necessary. Generally it is applied in the criteria space, where the

choice of the solution is carried out and where diversity along the

Pareto frontier is required.
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During sharing process, scaling of all space parameters in the same 

interval (for example between 0 and 1) is indispensable in order to 

avoid the comparison between values that can be very different. 

Output (kg/hr)

P
o
w
e
r 
c
o
n
su
m
p
ti
o
n
 (
W
)

1000 -

3000 -

500

σshare= 500.004

Output (kg/hr)

1 -

1

P
o
w
er
 c
o
n
su
m
p
ti
o
n
 (
W
)

σshare=         /42

A B

NICHING AND SPECIATION

Dept. Polymer Engineering

University of Minho

As σshare, the α parameter in the corresponding equation controls the 

radial size of the niche “radius”, as shown in the following Figure: 
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The variation of the degree of the Holder metric used also changes 

the shape of the niche 
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