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Complicated mathematical models are able to describe 
adequately the (Engineering) processes to be optimized
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How are these tools used to optimize the processes?

MOTIVATION



3

Dept. Polymer Engineering

University of Minho

Traditional approaches:

The traditional way of tackling this type of problems consists of using

approximation and decomposition techniques to split a problem into

simpler blocks and using simple specific models to give a more global

representation of the problem.
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MOTIVATION

Aim of our approach:

Global optimization procedure

MO-MDO Problem Definition

Tentative Solutions

Definition of Multi-Models

Multidisciplinary Calculations Multiple Objectives

Optimized Solutions

Optimization Algorithm
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OBJECTIVE OF THE RESEARCH:

To implement a Multi-Objective Multidisciplinary Design and 

Optimization system (MO-MDO)

MOTIVATION
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Most real optimization problems are multiobjective

Example: Simultaneous minimization of the cost and maximization 

of the performance of a specific system

Performance

C
o
st

Single optimum

(maximizing the performance)

Single optimum

(minimizing the cost)

Multiple optima

(optimizing both objectives)

Dominated solution

PARETO FRONTIER

(set of non-dominated solutions)

MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM
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Method 1: AGGREGATING FUNCTION

Method 2: MULTIOBJECTIVE OPTIMIZATION USING EAs

OBJECTIVE: To obtain simultaneously several solutions along the Pareto frontier
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MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM
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Initialization of population: random definition 

of all individuals of the population

Evaluation: calculation of the values of the 

criteria using the modeling routine

Fitness: calculation of a single value 

identifying the performance of individual

Reproduction: selection of the best 

individuals for crossover and/or mutation

Crossover/Mutation: methods to obtain new  

individuals for the next generation (i+1)

Start

Initialise Population

Evaluation

Assign Fitness

Fi

Convergence

criterium 

satisfied?
Reproduction

Crossover

Mutation

i=i+1

Stop

no

yes

i=0

Population: set of individuals

Evolutionary Algorithm

MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM
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MULTI-OBJECTIVE 

OPTIMISATION
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Reduced Pareto Set Genetic Algorithm (RPSGAe)

MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM

RPSGAe sorts the population

individuals in a number of pre-defined

ranks using a clustering technique, in

order to reduce the number of

solutions on the efficient frontier.

Details:

A. Gaspar-Cunha, J.A. Covas, - RPSGAe - A

Multiobjective Genetic Algorithm with Elitism:

Application to Polymer Extrusion, in

Metaheuristics for Multiobjective Optimisation,

Lecture Notes in Economics and Mathematical

Systems, Gandibleux, X.; Sevaux, M.;

Sörensen, K.; T'kindt, V. (Eds.), Springer, pp.

221-249, 2004.
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Multi-Objective Optimization - Example
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L1 L2 L3 D1 (mm) D3 (mm) CR

Screw 1 3.1D 6.7D 16.2D 25.0 26.3 1.14

Screw 2 9.9D 5.5D 10.5D 25.6 26.1 1.05

Screw 3 10.4D 5.6D 10.0D 25.7 26.1 1.04

Screw 4 10.5D 5.6D 9.9D 25.7 26.1 1.05

Screw 5 10.5D 5.2D 10.3D 25.7 26.1 1.04 CR = 1.14D
1
=
 2
5
.0
 m
m

3.1D 6.7.8D 16.2D

D
3
=
 2
6
.3
 m
m

D=36 mm

Sensitivity study
Best screw

Decision Making/

Robustness

MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM

Multi-Objective Optimization - Example

Dept. Polymer Engineering

University of Minho

MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM
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Decision in Multi-Objective Environment

DECISION MAKING
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The solution of a Multi-Objective Optimization Problem results from:

SEARCH PROCESS DECISION PROCESS

Aim
To obtain several solutions along 

the whole Pareto frontier

To obtain a single solution from the 

Pareto frontier

How
Using a Multi-objective 

Evolutionary Algorithm (MOEA)

Integrating the DM preference 

(criteria) information

Result
Pareto frontier Pareto frontier

DECISION MAKING
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A priori methods: The decision maker must specify her or his

preferences, expectations and/or options before the optimization

process takes place (aggregating function).

A posteriori methods: After the generation of the Pareto optimal set, the

DM selects the most preferred among the alternatives taking into

account his or her own preferences.

Interactive methods: Decision making and optimization occur at

interleaved steps. At each step, partial preference information is

supplied by the DM to the optimizer, which, in turn, generates better

alternatives according to the information received.

Methods to deal with the DM preferences

DECISION MAKING
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METHODS TO DEAL WITH THE DM PREFERENCES

DECISION MAKING
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METHODS TO DEAL WITH THE DM PREFERENCES

DECISION MAKING
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Correspondence between solutions and DM preferences

The applicability of decision methods depends strongly on the extent to which

the parameter values defined by the DM (as an expression of his or her

preferences) produce solutions corresponding to those preferences.

Preference 

information 

(DM)

Solution to 

the problem

Decision 

Making

This solution satisfies the DM?

DECISION MAKING
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DECISION MAKING

Rubber Elasticity Analogy

• This concept is based on the stress-strain behaviour of thermoplastic vulcanizate (TPV) materials.

• A TPV is formed by a cured elastomeric particles surrounded by a continuous thermoplastic matrix.

• When the volume fraction of the elastomeric particle is increased  the elasticity increases .
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Rubber Elasticity Analogy

mirror



15

Dept. Polymer Engineering

University of Minho

STRESS FUNCTION CONCEPT

The stress function (σσσσw1) increases as

the distance between the coordinate

of the ideal objective vector (1;1) and

the coordinate of the solution

increases, i.e., when this coordinate

goes from f1,X to f1,Y

σσσσwi- Stress function (where wi is the 

weight attributed to criterion i)
Z* - IDEAL OBJECTIVE VECTOR

0
f1 

f2 

PARETO FRONTIER
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Sx∈toSubject

OBJECTIVE FUNCTION

DECISION MAKING
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DECISION MAKING – Weight Stress Function
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Lines for which the 

difference  (σ1-σ2) is 
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Weight vector: (0.5, 0.5) Weight vector: (0.8, 0.2)
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� Weighted Sum

� Weight Tchebycheff Metric

� Reference Point Based EMO Approach

� Goal Programming

DECISION MAKING
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Sx∈toSubject

Objective Function

DECISION MAKING – Weighted Sum

Objective function 
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Sx∈toSubject

Objective Function

DECISION MAKING – Weighted Tchebycheff Metric

Weight vector: (0.5, 0.5) Weight vector: (0.8, 0.2)
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V.J. Bowman, On the Relationship of the Tchebycheff Norm and the Efficient Frontier of Multiple-Criteria Objectives, Multiple

criteria Decision Making, Edited by H. Thiriez, S. Zionts, Lecture Notes in Economics and Mathematical Systems, Springer-

Verlag, Berlin, pp. 76-85, 1976.
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Objective Function

DECISION MAKING – Reference Point Based EMO Approach

Objective function 
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K. Deb, J. Sundar, U. Bhaskara and S. Chaudhuri, “Reference point based multi-objective optimization using evolutionary

algorithms,” International Journal of Computational Intelligence Research, vol.2, pp.273-286, 2006.
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Sx∈toSubject

Objective Function

DECISION MAKING – Goal Programming
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To develop a method able to assess the

quality of the relation between the

decision-model parameters (e.g., weight

vector) and the resulting solutions

Ideally, the objective values of the set of non-dominated

solutions selected from the Pareto frontier should reflect,

in a consistent way, the changes made into the

parameters vector

DECISION MAKING – Quality Assessment Methodology

OBJECTIVE:
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1. Perform a uniform sampling of

the weight vector (w1,i);

2. For each pair (w1,i; w2,i) a

different solution (f1,i, f2,i) is

obtained;

3. Area Ai is computed for each

solution;

4. The standard deviation of Ai is

calculated;

Definition of a quality measure: “Hypervolume”

Good performance implies low 

standard deviation!!!!

DECISION MAKING – Quality Assessment Methodology
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DECISION MAKING – Test problems

TP 1: x ∈[-2;6]; Minimize; L=1; M=2 
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TP 3 (ZDT1): xi ∈[0;1]; Minimize; L=30; M=2 
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TP 4 (ZDT2): xi ∈[0;1]; Minimize; L=30; M=2 
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In the case of the two objectives test

problems (TP1 to TP4) a sequence of

300 distinct, equality spaced, values

of the parameter w (∈∈∈∈ [-1, 1])

covering the interval [-1,1] was

generated.

21W ww −=

Assessing quality based on the hypervolume indicator

W
-1                     0                        1

dV
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DECISION MAKING – Test problems

TP 6 (DTLZ2): xi ∈[0;1]; Minimize; L=12; M=3 
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TP 7: xi ∈[0;1]; Minimize; L=12; M=3 
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3 objectives: a 2D triangular mesh with

4186 points was generated in a space

(W1 and W2) correspondent to a linear

combination of the three weights:

and :
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Assessing quality based on the hypervolume indicator
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DECISION MAKING – Test problems

Influence of δ1 and δ2 for 2D and 3D test problems



22

Dept. Polymer Engineering

University of Minho

TP1 TP2

TP3

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1

dV

w1-w2

WSFM

WTM

GP

RP-EMO

TP4

0

0.5

1

1.5

2

2.5

3

-1 -0.5 0 0.5 1
w1-w2

WSFM

WTM

GP

RP-EMO

0

0.5

1

1.5

2

2.5

3

-1 -0.5 0 0.5 1

dV

w1-w2

WSFM

WTM

GP

RP-EMO

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1

dV

w1-w2

WSFM

WTM

GP

RP-EMO

dV

DECISION MAKING – Results

Dept. Polymer Engineering

University of Minho

DECISION MAKING – Results

TP5

TP6

WTM GP WSFM
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RP-EMO WTM GP WSFM

Hyp. STD/avg Hyp. STD/avg Hyp. STD/avg Hyp. STD/avg

TP1 0.5970 1.074 0.6291 1.560 0.6340 0.004 0.6346 0.218

TP2 0.4656 17.843 0.6843 1.245 0.8131 0.257 0.8032 0.544

TP3 0.5358 3.113 0.5968 1.767 0.6115 0.436 0.6031 0.465

TP4 0.3291 0.023 0.3317 0.255 0.3317 0.436 0.3318 0.242

TP5 -- -- 0.4108 2.785 0.3833 2.542 0.4135 1.061

TP6 -- -- 0.4625 5.736 0.4150 2.478 0.4673 0.601

Comparison of the WSFM, WTM, GP and RP-EMO approaches

based on the total Hypervolume and the ratio between standard

deviation and the average of the uniformity measure for each

method.

DECISION MAKING – Results
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INFLUENCE OF THE DISPERSION PARAMETER (εεεε)

εεεε = 0.005 εεεε = 0.2

εεεε = 0.4 εεεε = 0.99

Test problem 1:

Minimize

N = 100

DECISION MAKING

Weights

(0.8, 0.2)
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INFLUENCE OF THE WEIGHT VECTOR

Weights: (c) – (0.5, 0.5)(a) – (0.98, 0.02)

(b) – (0.8, 0.2) (d) – (0.2, 0.8)

(e) – (0.02, 0.98)

(c)

(a)

(b)

(d)

(e)

(c)

(a)

(b)

(d)
(e)

Test problem 1:

Minimize

N = 100

Test problem 2:

Maximize

N = 100

DECISION MAKING

εεεε = 0.1
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(c)

(b)(a)

(c)

(b)(a)

(c)

(b)(a)

WSFMGPWTMTP5

TP6

(c)

(b)(a)

(c)

(b)(a)

(c)

(b)(a)

Weight vectors: (a) (0,1,0), (b) (1,0,0) and (c) (0,0,1).

Comparison between the WTM, GP and WSFM approaches for TP5 and TP6

DECISION MAKING
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Weight vectors: (a) (0.1,0.8,0.1), (b) (0.8,0.1,0.1), (c) (0.1,0.1,0.8), 

(a*) (0.07,0.8,0.13), (b*) (0.8,0.07,0.13) and (c*) (0.07,0.13,0.8).

Sensitivity comparison between the WTM, GP and WSFM approaches for TP6
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� A method able to take into account the preferences of the DM,

based on the use of a stress function approach, was proposed.

� A measure allowing the evaluation of the uniformity of the

results obtained for MOOP has been proposed and was used

to compare the performance of three different decision making

methods using seven different test problems.

� These results shown that the WSF method has the best

performance on most of test problems tested (it has a better

correspondence between the preferences of the DM and the

solution obtained by the decision method).

DECISION MAKING - Conclusions
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ROBUSTNESS

MOEA

Decision Making

Robustness

Hybridization

MO Problem

Characteristics

Evaluation of solutions

Framework Interface

Selection of the desired solutions

Good

Solution(s)?

Yes No

END

Inverse

Decision Making

Methodology

Objectives reduction

DM1

DM2

Structural mechanics

Design

Fluid dynamics

Aerodynamics

Comfort assessment

?

Numerical/modelling routines

Empirical knowledge
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Objectives

i) To select an efficient method to quantify

robustness

ii) To apply a robustness approach during multi-

objective optimization problems using EMOAs

ROBUSTNESS
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Best solution, 

with low robustness

Most robust solution, 

with lower performance

Sensitivity to variations of the design variables
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Concept of robustness for single objective functions
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f2

Decision space Criteria space
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II
II
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Concept of robustness for multi-objective functions

Lower robust solution

Most robust solution
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ROBUSTNESS

Optimal Pareto frontier versus robust Pareto frontier

f1

f2 Optimal Pareto frontier

f1

f2 Optimal Pareto frontier

Robust Pareto frontier

A) B)

f1

f2 Optimal Pareto frontier

Robust Pareto frontier

f1

f2 Optimal Pareto frontier

Robust Pareto frontier

C) D)
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Robustness can be taken into account by:

• Replacing fm by a measure of both its performance and expectation in the

vicinity of the solution considered (expectation measure).

• Considering an additional criterion for each of the M objective functions,

which measures the variation of the original objective function around the

vicinity of the design point considered (for example, variance) – variance

measure.

ROBUSTNESS
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Variance Measures
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Extending Robustness Measures to Multiple Objectives

∑
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i ff ,
,...,1

2 max
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1- The robustness of individual i can be calculated as the robustness

average obtained for each criterion m:

2- The robustness could be defined as the maximum of the robustness

measures calculated for individual i in each criterion m:

9)

8)
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Individual robustness expectation measures

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0.0

0.2

0.4

0.6

0.8

1.0

F
(x
)

dmax=0.05

dmax=0.075

dmax=0.1

dmax=0.2

dmax=0.33
D)

0.0

0.2

0.4

0.6

0.8

1.0

F
(x
)

C)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

A)

0

1

2

3

4

5

F
(x
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

B)

0.0

0.2

0.4

0.6

0.8

1.0

F
(x
)

dmax=0.05

dmax=0.075

dmax=0.1

dmax=0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

Expectation measures for test problem 1, using equations: A) 2; B) 3; C) 4 and D) 5.
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Equation 
Clear 

definition 

Independence of 

parameters 
Efficiency 

2 Yes Yes Small 

3 No No Medium 

4 Yes No Small 

5 Yes Yes High 

 

Comparative performance of the expectation measures

ROBUSTNESS
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Individual robustness variance measures
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D)

C)

Robustness of test problem 1, using equations 6: (A) robustness vs. x, B) Pareto-curves; 

and 7: (C) robustness vs. x, D) Pareto-curves
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Comparative performance of the variance measures

Equation 
Clear 

definition 

Independence of 

parameters 
Efficiency 

Clear definition 

of maxima 

6 No Yes Medium No 

7 Yes Yes High Yes 
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Combined robustness measures
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A)

Test problem 1 with two criteria, using: A) original fitness functions; B) trade-off

between expectation measures
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Combination 1

Original functions plus individual robustness measures fi(x) + fi
R(x)

Combination 2

Original functions plus average robustness measure fi(x) + fi
R1(x)

Combination 3

Original functions plus average robustness measure fi(x) + fi
R2(x)

Combination 4

Original functions fi(x)

Combination 5

Expectation functions Fi(x)

ROBUSTNESS
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Combination Problem 
N. of 

criteria 
No. of peaks (%) Efficiency (%) Precision (%) 

Global 

(%) 

2 57 67 79 
1 

3 100 100 99 

2 100 100 98 
1 

2 
3 47 

76 
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46 

81 83 

2 43 100 59 
1 

3 75 100 80 

2 50 50 50 
2 

2 
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64 70 

2 29 67 38 
1 

3 75 75 79 

2 60 100 60 
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2 
3 53 
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58 66 

2 14 33 20 
1 

3 13 25 20 

2 10 50 19 
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2 
3 47 

21 
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26 33 

2 14 33 19 
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3 13 25 20 

2 10 0 12 
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3 33 
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40 
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Optimization of Multi-objective problems
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• A measure of the robustness of solutions was introduced in a

multi-objective evolutionary algorithm;

• Two types of robustness measures are defined, expectation and

variance;

• The approach enabled the use of various combinations of criteria

that were assessed using benchmark problems;

• The most performing uses the original criteria combined with an

equal number of new criteria quantifying robustness through the

variance measure proposed in this work;

• The methodology was successfully applied to a number of multi-

objective problems.

ROBUSTNESS – Conclusions 
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Robustness can be taken into account by:

• Replacing fm by a measure of both its performance and expectation in the

vicinity of the solution considered (expectation measure).

• Considering an additional criterion for each of the M objective functions,

which measures the variation of the original objective function around the

vicinity of the design point considered (for example, variance) – variance

measure.

ROBUSTNESS
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The robustness of the solution i can be calculated by the

following equation:
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1- Random initial population (internal)

2- Empty external population

3- while not Stop-Condition do

a- Evaluate internal population

b- Calculate expectation and/or robustness measures

c- Calculate niche count

d- Calculate the Ranking of the individuals using the RPSGAe

e- Calculate the global Fitness

f- Copy the best individuals to the external population

g- if the external population becomes full

Apply the RPSGAe to this population

Copy the best individuals to the internal population

end if

h- Select the individuals for reproduction

i- Crossover

j- Mutation

end while

ROBUSTNESS

A. Gaspar-Cunha, J.A. Covas, Robustness in Multi-Objective 

Optimization using Evolutionary Algorithms, Computational 

Optimization and Applications, 39, pp. 75-96, 2008.
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Start

Define:

- NRanks;

- 0< ε ≤1;

- dmax.

ε’ = ε2

Calculate 

R(i) and m(i)

i = 1

i = i + 1

i ≤ N

Apply the RPSGAe 

scheme 

to calculate Rank(i)

Calculate ͠Fi 

Stop

i = 1

i = i + 1

i ≤ N

ROBUSTNESS
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The following calculation steps must be carried out:

1. The robustness routine starts with the definition of the number of

ranks (Nranks), the span of the Pareto frontier to be obtained (ε ∈
[0,1]) and the maximum radial distance to each solution to be

considered in the robustness calculation (dmax);

2. To reduce the sensitivity of the algorithm to small values of the

objective functions, the dispersion parameter is changed as

ε’ = ε2;

3. For each individual, i, robustness , R(i), and niche count, m(i) ,

are determined;

4. The RPSGA algorithm is applied, with some modifications

introduced to calculate Rank(i);

5. For each solution, i, the new fitness is calculated.

ROBUSTNESS
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ROBUSTNESS - Test Problems
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TP 1: x ∈[-2;6]; Minimize; L=1; M=2.

TP 2: x ∈ [0;5]; Maximize; L=1; M=2.

TP 3 (ZDT1): xi ∈[0;1]; Minimize; L=30; M=2; 
Deb, Pratapat et al., 2002.

TP 4 (ZDT2): xi ∈[0;1]; Minimize; L=30; M=2; 
Deb, Pratapat et al., 2002.
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ROBUSTNESS - Test Problems
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TP 5 (ZDT3): xi ∈[0;1]; Minimize; L=30; M=2;
Deb, Pratapat et al., 2002.

TP 6: x1 ∈[0;2π]; x2 ∈[0;5]; Minimize; L=2; M=3.

TP 7 (DTLZ2): xi ∈[0;1]; Minimize; L=12; M=3; 
Deb, Thiele et al., 2002.
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ROBUSTNESS

Influence of Nranks

TP1 TP4
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ROBUSTNESS

Influence of dmax

TP1 TP4
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New methodology based on the concept of the dispersion 

parameter  developed for Decision making

ROBUSTNESS

εεεε=0.1 εεεε=0.2
εεεε=0.3

εεεε=0.4
εεεε=0.6 εεεε=1.0
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HYBRID ALGORITHMS

MOEA

Decision Making

Robustness

Hybridization

MO Problem

Characteristics

Evaluation of solutions

Framework Interface

Selection of the desired solutions

Good

Solution(s)?

Yes No

END

Inverse

Decision Making

Methodology

Objectives reduction

DM1

DM2

Structural mechanics

Design

Fluid dynamics

Aerodynamics

Comfort assessment

?

Numerical/modelling routines

Empirical knowledge

Dept. Polymer Engineering

University of Minho

Computation time required to evaluate the solutions

Start

Initialise Population

Evaluation

Assign Fitness

Fi

Convergence

criterion 

satisfied?

Selection

Recombination

i = i + 1

Stop

no

yes

i = 0

Engineering problems:

Black Box

Numerical modelling 

routines

• Finite elements

• Finite differences

• Finite volumes

• etc

HIGH COMPUTATION TIMES

HYBRID ALGORITHMS
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Three possible approaches to reduce the computation time

1. During evaluation – Some solutions can be evaluated using

an approximate function, such as Fitness Inheritance, Artificial

Neural Networks, etc (this reduce the number of exact

evaluations necessary).

2. During/after recombination – Some individuals can be

generated using more efficient methods (this produce a fast

approximation to the optimal Pareto frontier, thus the number of

generations is reduced).

3. Local Search – Some new individuals are generated by local

search algorithms

HYBRID ALGORITHMS
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Three possible approaches to reduce the computation time

1. During evaluation – Some solutions can be evaluated using

an approximate function, such as Fitness Inheritance, Artificial

Neural Networks, etc (this reduce the number of exact

evaluations necessary).

Using Artificial Neural Networks (ANN) to evaluate

some solutions during the search.

HYBRID ALGORITHMS
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Artificial Neural Networks

P1

P2

Pi

C1

...

C2

Cj

...

Input

Layer
Output

Layer

Hidden

Layer
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Three possible approaches to reduce the computation time

2. During/after recombination – Some individuals can be

generated using more efficient methods (this produce a fast

approximation to the optimal Pareto frontier, thus the number of

generations is reduced).

HYBRID ALGORITHMS
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Use of an IANN together with the Recombination operators

Start

Initialise Population

Evaluation

Assign Fitness

Fi

Convergence

criterion 

satisfied?

Selection

Recombination

i = i + 1

Stop

no

yes

i = 0

Recombination operators:

• Crossover

• Mutation

Inverse ANN (IANN)

C1

C2

Cq

V1

...

V2

VM

...

VariablesCriteria
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Set of Solutions Generated with the IANN
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Points 1, 2, ?, n:

Selection of n+q solutions from the

present population to generate:

• 3.q extreme solutions

• n interior solutions
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Set of Solutions Generated with the IANN
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Use  of IANN to generate 

new solutions
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MOEA - Inverse ANN

2C-ZDT1

• The Inverse ANN approach has the largest improvement during the

first generations, i.e., when the solution is far from the optimum;

HYBRID ALGORITHMS
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Three possible approaches to reduce the computation time

3. Local Search – Some new individuals are generated by local

search algorithms
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FILTER METHOD:

- Uses the concept of non-dominance to build a filter that accepts iterates that

improve either the objective function or the constraints violation instead of a

combination of the two measures.

( )
( ) 0tosubject

minimize

≥xC

xF

In the FM the main idea is to:

- Minimize a measure of the constraints violation:

- Minimize the objective function F(x)

The filter technique attempt to minimize both functions, but a certain emphasis is

placed on the first measure, since a point has to be feasible in order to be an

optimal solution.

( ) ( ) ( )( )0,xCmaxxCx == +θ

Filter Method

HYBRID ALGORITHMS
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F(x)

A filter is a finite set of pairs (θ(xl); F(xl)), that correspond to a collection of

previous iterates xl, with the additional requirement that a point in order to

be accepted, has to improve at least one of the two measures when

compared to those of the previous iterates.

In order words, a point x can be accepted only if:

( ) ( ) ( ) ( )ll xFxForxx ≤≤ θθ

To avoid the acceptance of pairs that are

arbitrarily close to the boundary of the

set of all pairs that are dominated by the

filter, this condition is replaced by:

CONDITION 2

( ) ( ) ( ) ( ) ( ) ( )
[ ]10

1

,,:where

xxFxForxx

F

lFll

∈

−≤−≤

γγ

θγθγθ

θ

θ

Filter Method

θ(x)θmax

x1

x2

x3

xl

x4
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Using a Local Search Procedure

Start

Initialise Population

Evaluation

Assign Fitness

Fi

Convergence

criterion 

satisfied?

Reproduction

Recombination

i = i + 1

Stop

no

yes

i = 0

Recombination operators:

• Crossover

• Mutation

• Local Search (PSFM)

HYBRID ALGORITHMS
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Algorithm 1

If generation = Ngen then

Select the Nsol using the clustering technique

Set S = { }

for i=1, �, M (n. of objectives) do

θ(x) = measure of restriction violation for all objectives (different of i) 

F(x) = f(i)

Apply the PSFM (Algorithm 2) to get a new set of solutions - Si

Set S = S ∪ Si

end for

Incorporate S, the solutions generated, in the main population

end if

HYBRID ALGORITHMS
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Algorithm 2:
Define: α(tol)>0, α(0)>0, {d(1), d(2), �,d(2q)}  and {x(1), x(2), �, x(Nsol)} 

For i=1, �,Nsol do
If i=1 then initialize the filter
Set α = α(0) * ∆α
For j=0, �, q do

Set x(i) = x(i) + α d(j)
end for
Evaluate θ and F
If the pair (θ, F) do not belong to the Filter, then

If CONDITION 2 holds then
Accept the trial point (x(i))
break

end if
else

Reject the point 
Set α = ½ α.
If α < α(tol) then break

end if
end for

( ) εα∆ kkN,,k lumax −= = K1

- q is the number of variables

- u and l are the upper and lower 

bounds for each variable

- εεεε is a parameter to be defined

HYBRID ALGORITHMS
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Algorithm 2:
Define: α(tol)>0, α(0)>0, {d(1), d(2), �,d(2q)}  and {x(1), x(2), �, x(Nsol)} 

For i=1, �,Nsol do
If i=1 then initialize the filter
Set α = α(0) * ∆α
For j=0, �, q do

Set x(i) = x(i) + α d(j)
end for
Evaluate θ and F
If the pair (θ, F) do not belong to the Filter, then

If CONDITION 2 holds then
Accept the trial point (x(i))
break

end if
else

Reject the point 
Set α = ½ α.
If α < α(tol) then break

end if
end for

( ) εα∆ kkN,,k lumax −= = K1

- q is the number of variables

- u and l are the upper and lower 

bounds for each variable

- εεεε is a parameter to be defined
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Set of Solutions Generated with PSFM

At a pre-defined generation (Ngen):

Selection of Nsol solutions from the present population

Objective 1

O
b
je
ct
iv
e 
2 2

3

4
…

1

Nsol

x1

x
2

Nsol

1 2

3

4
…
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Set of Solutions Generated with PSFM

Objective 1

O
b

je
c
ti
v
e

 2

2

3

4
?

1

Nsol

For each objective (for i=1, ?, M):

θ(x) = measure of restriction violation for all objectives (different of i) 

F(x) = f(i)

θ(x)

F
(i
)

2

3
4

?

1

Nsol
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Apply the PSFM to generate a new set of solutions - S

x
2

x1

1

F
(i
)

θ(x)

1

Incorporate the solutions generated in the main population

( ) ( ) ( ) ( ) ( ) ( )
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K. Deb et. al - Test Problem Generator

2C-ZDT1 (Convex): M = 30; xi ∈ [0, 1]

2 Criteria
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2C-ZDT3 (Discrete): M = 30; xi ∈ [0, 1]

2C-ZDT2 (Non-convex): M = 30; xi ∈ [0, 1]
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2C-ZDT4 (Multimodal): M = 10; x1 ∈ [0, 1]; xi ∈ [-5, 5]

2C-ZDT6 (Non-uniform): M = 10; xi ∈ [0, 1]
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Hypervolume Metric

This metric calculates the dominated space volume,

enclosed by the nondominated points and the origin.

S metric:

Volume of the space dominated by

the set of objective vectors

C1

C2

Criteria C1 and C2 to maximize

Hypervolume

HYBRID ALGORITHMS
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Comparison between RPSGA and MO-PSFM: Influence of the n. of solutions

ZDT1 – 2C
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Comparison between RPSGA and MO-PSFM
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Test problem Hypervolume RPSGAe MO-PSFM Improvement (%)

ZDT1-2C 0.854 12800 8400 34

ZDT2-2C 0.773 11900 8600 28

ZDT3-2C 2.06 21300 13200 38

ZDT4-2C Not applicable

ZDT6-2C 0.66 15500 4030 74

Comparison between RPSGA and MO-PSFM

HYBRID ALGORITHMS
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• A Memetic multi-objective algorithm, based in the

incorporation of a PSFM within a MOEA, was proposed

(MO-PSFM).

• The results produced, using some difficult test problems,

indicate that the hybrid methodology proposed is able to

reduce the number of evaluations of the objective

functions necessary to get identical performance.

• Since the local search methodology used here is very

simple there is some room for improvements in the MO-

PSFM.

HYBRID ALGORITHMS

Dept. Polymer Engineering

University of Minho

HYBRID ALGORITHMS

Comparison between the different methods
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ZDT1: rpsga, nsga-II, iann, psfm

HYBRID ALGORITHMS
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ZDT2: rpsga, nsga-II, iann, psfm
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ZDT4: rpsga, nsga-II, iann, psfm
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ZDT6: rpsga, nsga-II, iann, psfm
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DTLZ2: rpsga, nsga-II, iann, psfm
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NUMBER OF OBJECTIVES REDUCTION

• Another important issue consists in verifying if all the

objectives considered for the resolution of the problem are

important for obtaining a good solution.

• A technique for reducing the number of objectives is, for

that reason, of high importance.

• The reduction of the number of objectives will facilitate

both the optimization and the decision phases.
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MOEA

Decision Making

Robustness

Hybridization

MO Problem

Characteristics

Evaluation of solutions

Framework Interface

Selection of the desired solutions

Good

Solution(s)?

Yes No

END

Inverse

Decision Making

Methodology

Objectives reduction

DM1

DM2

Structural mechanics

Design

Fluid dynamics

Aerodynamics

Comfort assessment

?

Numerical/modelling routines

Empirical knowledge
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Design of a roof structure
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Objective 1
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 2

Framework interface

At this phase the solutions obtained are

shown to the various DMs involved on

the process.

Inverse decision making methodology

An inverse Decision Making methodology

was applied to determine the weights

corresponding to the region of the search

space selected by the DMs. This

information was incorporated on the

MOEA to generate new solutions.

Preferred region selected by the DM

CASE STUDY
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CASE STUDY

Design of a roof structure (illustrative problem)

The aim is to define the best location of the points by:

1. Minimizing the cost (quantified by the area)

2. Minimizing the Day Light 

PROBLEM:

How to define the limits of 

the design parameters?
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Instance1 Instance n�    

Optimization Optimization Optimization

Non-dominated

solutions – set 1

Non-dominated

solutions - set �
Non-dominated

solutions – set n

Pool of non-dominated solutions

(initial population)

Optimization

Final solutions
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Strategy adopted
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CASE STUDY

Instance 1: the coordinates of the 20 control points (corresponding to 60

decision variables) the 3D coordinates are allowed to vary

between 0.5 and 5 meters

Instance 2: the corners of the structure are fixed, i.e., points P1(0,0,0),

P4(5,0,0), P17(0,5,0) and P20(5,5,0). In this case 48 decision

variables are to be optimized.

Instance 3: the corners points as well the border points are fixed, i.e.,

points P1(0,0,0), P2(1.6,0,0.5), P3(0.338,0,0.5), P4(5,0,0),

P8(5,0.65,0.18), P13(0,0.335,0.18), P16(5,0.335,0.18),

P17(0,5,0), P18(1.6,5.0,0.5), P19(0.338,5,0.5) and P20(5,5,0).

This corresponds to 24 decision variables.

In instances 2 and 3 the coordinates of the remaining control points are

allowed to range in the interval [0.5, 5] meters (as in instance 1).
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Optimal Pareto frontiers for Instances 1 to 3
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CASE STUDY

Optimal Pareto frontier using as initial population the 

non-dominated solutions obtained before
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Optimal Pareto frontier using the DM strategy



70

Dept. Polymer Engineering

University of Minho

� A Multi-Objective Multidisciplinary Design Optimization (MO-MDO)

approach was proposed to deal with the practical complexities of large

multi-objective problems.

� The methodology links a MOEA to decision making and robustness

strategies that are able to assist the decision maker in selecting the

best solutions that satisfy his preferences and/or are sufficiently robust

against changes of the values of the decision variables, respectively.

� Also, with the aim of reducing the computation time often required by

the evaluation routines (by decreasing the number of required real

function evaluations) two different Memetic algorithms were

suggested.

� Application of the methods to a few test problems demonstrated their

effectiveness.

GLOBAL CONCLUSIONS


