

DESIGN OF SHADING DEVICES
Ecotect: Sustainable Building Design Software Is a comprehensive concept-to-detail sustainable building design tool
Whole-building energy analysis Calculate total energy use and carbon emissions of your building model on an annual, monthly, daily, and hourly basis, using a global database of weather information.
Thermal performance Calculate heating and cooling loads for models and analyze effects of occupancy, internal gains, infiltration, and equipment.
Water usage and cost evaluation Estimate water use inside and outside the building.
Solar radiation Visualize incident solar radiation on windows and surfaces, over any period.
Daylighting Calculate daylight factors and illuminance levels at any point in the model.
Shadows and reflections Display the sun's position and path relative to the model at any date, time, and location.
Dept. Polymer Engineering University of Minho

DESIGN OF SHADING DEVICES Ecotect - Sustainable Building Design Software analysis and simulation tool Thermal performance analysis

Direct Solar Gains were calculated on the 21th of June (when the sun is highest) and on the 21th of December (when the sun is lowest). Hourly calculations were performed, and the total direct solar gain in Wh was used as a reference for the performance of the shading device.

The thermal settings for the cube were specified according to standard use of a living room: 60% humidity, 0,30m/s Air Speed, 200 lux Lighting Level, 1 person seated and reading 55W, no Sensible or Latent Gains, Air Change Rate of 0,50 and Wind Sensivity of 0,10 Air changes/hr. Not all of those parameters are important or included in the calculations used for simulation and analysis in this experiment.

Daylighting

The Daylight Factor was calculated over a grid at the height of 600mm and the average value of the results of three nodes, one in de center of the cube and one at a distance of 400mm from the back wall and from the left side wall, and another at the same distances from the back wall but at the right side of the cube, was used as the result.

DESIGN OF SHADING DEVICES – Conclusions
 This study has introduced the use of a MOEA in the conceptual phase of the design process.
 The applied strategy for the use of a MOEA allowed for the DM to iteratively control the outcome and steer the process to a personal aesthetical solution.
 The DM can rely less on intuition to solve complicated and conflicting design requirements and concentrate efforts on innovative and aesthetical pleasing results.
 The utility of the design method proposed was demonstrated in the design of an architectural object which can be tested and validated in the real physical world.
 An effort was made in order to prepare the method for general use by less computer literate architects and designers for deployment in real world design processes.
Dept. Polymer Engineering University of Minho

P	POLYMER EXTRUSION – Twin-Screw																	
	The problem to solve																	
1. 2.	 Polymer: PP (HB121J, from Borealis) Extruder: Leistritz LSM 30.34 (Configuration of the individual screw elements) 																	
I	Element N°		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	Length		97.5	120	45 KD	60	30	30	30	60	30 KD	120	30	120	37.5 VD	60	60	30
	Pitch		45	30	КВ -45	30	-20	60	30	20	КВ -60	30	30	60	КВ -30	45	30	20
3.	3. Optimization criteria, aim of optimization and prescribed range of variation																	
	~				CII	lena						AIIII 		A _{mi}	'n	л, 1.5/	nax	
	Case Study 1	Avera	ge stra	un			~ ~ ~				Maximize Minimize Maximize		e	100	0	150	000	_
	Study I	Speci	fic me	chanic	cal ene	ergy -	- SM	E (M	J/kg)				e	0.5		2	2	
	Case	Avera	ge stra	ain									e	1000		15000		
	Study 2 Viscous dissipation – Tmax/Tb							Mi	Minimize		0.9		1.5					
	Case Specific mechanical energy – SME (MJ/kg)						Mi	Minimize 0		0.5	i	2	2					
	Study 3	Viscous dissipation – Tmax/Tb							Mi	nimiz	e	0.9		1	.5			
	Dept. Polymer Engineering University of Minho																	

- In science and engineering, researchers are often challenged with the need to replicate the innovative results obtained in an equipment of a given size in another equipment of a different dimension.
- In practice, this often involves passing from laboratory or prototype dimensions to industrial level.
- The process is known as scale-up and consists in ensuring that the values of the criteria that describe the process characteristics at a given scale are preserved at different scales.

Dept. Polymer Engineering

University of Minho

×

FEATURE SELECTION – Bankruptcy							
METHODS: Cha	racteristics and Parameters						
Logistic regression (LG):	Support Vector Machines (SVM):						
Method of the gradient	Method: v-SVC and C-SVC						
descent	Kernel: Radial Basis Function (RBF)						
Parameters Studied:	Parameters Studied:						
 Training method 	Training method						
Learning rate	• Regularization parameter (v, C)						
Training fraction	 Kernel parameter (γ) 						
Objectives:	Objectives:						
NF + Accuracy	NF + Accuracy						
	• NF + Other measures						
	Dept. Polymer Engineering University of Minho						

FEATU	FEATURE SELECTION – Bankruptcy								
Feature	Designation	Feature	e Designation						
F1	Number of employees	F16	Cashflow / Turnover (\%)						
F2	Capital Employed / Fixed Assets	F17	Working Capital / Turnover (days)						
F3	Financ. Debt / Capital Employed (\%)	F18	Net Current Assets/Turnover (days)						
F4	Depreciation of Tangible Assets (\%)	F19	Working Capital Needs / Turnover (\%)						
F5	Working capital / current assets	F20	Export (\%)						
F6	Current ratio	F21	Value added per employee						
F7	Liquidity ratio	F22	Total Assets / Turnover						
F8	Stock Turnover days	F23	Operating Profit Margin (\%)						
F9	Collection period	F24	Net Profit Margin (\%)						
F10	Credit Period	F25	Added Value Margin (\%)						
	Turnover per Employee	F26	Part of Employees (\%)						
F11	(thousands euros)	F27	Return on Capital Employed (\%)						
F12	Interest / Turnover	F28	Return on Total Assets (\%)						
F13	Debt Period days	F29	EBIT Margin (\%)						
F14	Financial Debt / Equity (\%)	F30	EBITDA Margin (\%)						
F15	Financial Debt / Cashflow		g(////						
			Dept. Polymer Engineering University of Minho						

FEATURE SELECTION – Bankruptcy								
RPSGA parameters								
Due to the stochastic nature of the initial population,								
16 runs of each experiment were performed:								
• Number of ranks $(N_{ranks}) = 30$								
 Indifference limits of the clustering algorithm = 0.1 								
• Size of the internal population $(N) = 100$								
• Size of the external population $(N_e) = 100$								
 Number of generations = 100 								
Crossover rate = 0.8								
• Mutation rate = 0.05								
Details: A. Gaspar-Cunha, J.A. Covas, - RPSGAe - A Multiobjective Genetic Algorithm with Elitism: Application to Polymer Extrusion, in Metaheuristics for Multiobjective Optimisation, Lecture Notes in Economics and Mathematical Systems, Gandibleux, X.; Sevaux, M.; Sörensen, K.; T'kindt, V. (Eds.), Springer, pp. 221-249, 2004.								
Dept. Polymer Engineering University of Minho								

Experiment	Training Method	Learning	Training
Loa1	Н	0.001	2/3
Log2	Н	0.01	2/3
Log3	Н	0.02	2/3
Log4	Н	0.1	2/3
Log5	Н	0.01	0.5
Log6	Н	0.01	0.8
Log11	K (10)	0.001	NA
Log12	K (10)	0.01	NA
Log13	K (10)	0.02	NA
Log14	K (10)	0.1	NA
Log15	K (5)	0.01	NA
Log20	Н	[0.001, 0.1]	[0.2, 0.9]
Log21	K (10)	[0.001, 0.1]	NA
NA: Not Appl	icable		

Experiment	Training Method	Learning Rate	Training Fraction
Log1	Н	0.001	2/3
Log2	Н	0.01	2/3
Log3	Н	0.02	2/3
Log4	Н	0.1	2/3
Log5	Н	0.01	0.5
Log6	Н	0.01	0.8
Log11	K (10)	0.001	NA
Log12	K (10)	0.01	NA
Log13	K (10)	0.02	NA
Log14	K (10)	0.1	NA
Log15	K (5)	0.01	NA
Log20	Н	[0.001, 0.1]	[0.2, 0.9]
Log21	K (10)	[0.001, 0.1]	NA
NA: Not Appl	icable		

Run	Training Method	Learning Rate	Training Fraction
Log1	Н	0.001	2/3
Log2	Н	0.01	2/3
Log3	Н	0.02	2/3
Log4	Н	0.1	2/3
Log5	Н	0.01	0.5
Log6	Н	0.01	0.8
Log11	K (10)	0.001	NA
Log12	K (10)	0.01	NA
Log13	K (10)	0.02	NA
Log14	K (10)	0.1	NA
Log15	K (5)	0.01	NA
Log20	Н	[0.001, 0.1]	[0.2, 0.9]
Log21	K (10)	[0.001, 0.1]	NA
NA: Not Ar	oplicable		

FEATURE SELECTIO	N – Bankı	uptcy			
0.44	Experiment	γ	С	Training Method	Training Fraction
SVM	Ref. values	0.01	1	-	2/3
(NF + Accuracy):	C-svc01	0.01	1	Н	-
(C-svc02	0.1	-	Н	-
	C-svc03	1.0	-	H	-
	C-svc04	10	-	Н	-
	C-svc07	-	10	Н	-
	C-svc08	-	100	Н	-
	C-svc09	-	1000	H	-
	C-svc21	0.01	1	K	NA
	C-svc22	0.1	-	K	NA
	C-svc23	1.0	-	ĸ	NA
	C-svc24	10	-	K	NA
	C-svc27	-	10	ĸ	NA
	C-svc28	-	100	K	NA
	C-svc29	-	1000	K	NA
	C-svc50	-	-	Н	[0.2, 0.9]
	C-svc51	-	-	K	NA
	C-svc52	[0.005, 10]	[1, 1000]	Н	[0.2, 0.9]
	C-svc53	[0.005, 10]	[1, 1000]	ĸ	NA
	NA: Not App	licable			
			Dept	. Polymer Engin University of	eering Minho 🖹

FEATURE SELECTION – Bankruptcy								
0)/04	Experiment	γ	v	Training Method	Training Fraction			
SVIVI	Ref. values	0.01	0.05	-	2/3			
(NF + Accuracy):	v -svc01	0.01	-	H	-			
(v -svc02	0.1	-	H	-			
	v -svc03	1.0	-	Н	-			
	v -svc04	10	-	Н	-			
	v -svc07	-	0.01	Н	-			
	v -svc08	-	0.1	Н	-			
	v -svc09	-	0.5	H	-			
	v -svc21	0.01	-	K	NA			
	v -svc22	0.1	-	К	NA			
	v -svc23	1.0	-	К	NA			
	v -svc24	10	-	К	NA			
	v -svc27	-	0.01	К	NA			
	v -svc28	-	0.1	К	NA			
	v -svc29	-	0.5	К	NA			
	v -svc50	-	-	H	[0.2, 0.9]			
	v -svc51	-	-	K	NA			
	v -svc52	[0.005, 10]	[0.01, 0.5]	H	[0.2, 0.9]			
	v -svc53	[0.005, 10]	[0.01, 0.5]	ĸ	NA			
	NA: Not Ap	plicable						
			Dept	. Polymer Engli University o	f Minho			

FEATURE SELECTION – Bankruptcy										
C-SVC: results for experiment c-svc53										
	N. Features	Accuracy (%)	Y	С	Features					
	1	62.0	7.2	875	F4					
	2	84.5	7.7	905	F4, F30					
	3	93.0	10.0	995	F4, F7, F30					
	4	98.9	10.0	977	F4, F7, F22, F30					
	5	100.0	9.3	959	F4, F7, F11, F22, F30					
v-S	VC: result	s for experin	nent	v-svc	53					
	N. Features	Accuracy (%)	γ	V	Features					
	1	59.3	7.91	0.492	F2					
	2	66.2	7.55	0.486	F2, F22					
	3	91.4	9.91	0.232	F2, F16, F22					
	4	99.3	9.88	0.079	F2, F8, F16, F22					
	5	100.0	6.63	0.043	F1, F2, F8, F16, F22					
	Dept. Polymer Engineering University of Minho									

SVM (NF + other objectives)								
Experiment C γ Objectives								
1	10	$NF + F_m$						
1	10	$NF + e_i$						
1	10	NF + e ₁₁						
1	10	$NF + F_m + e_l$						
[1,10]	[0.001,1]	NF + F _m						
[1,10]	[0.001,1]	NF + e _i						
[1,10]	[0.001,1]	NF + e ₁₁						
[1,10]	[0.001,1]	NF + F _m + e _l						
[1,10]	[0.001,1]	$NF + R + e_l$						
[1,10]	[0.001,1]	$R + e_{l}$						
	SVM (NF + C 1 1 1 [1,10] [1,10] [1,10] [1,10] [1,10]	C γ 1 10						

FEATURE SELECTION – Bankruptcy									
SVM (NF + other objectives)									
	Pos	ulte fo	n a cir	alo r		f caso C SVC14			
	Ne3		// a 511	igie i					
	N.	-			_	E			
	Features	Fm	eı	Ŷ	C	Features			
	3	0.864	0.058	0.780	7.26	F11, F12, F16			
	4	0.770	0.007	0.052	2.42	F 3, F 5, F15, <mark>F16</mark>			
	4	0.823	0.025	0.739	4.85	F12, F15, F16, F24			
	4	0.862	0.043	0.803	6.39	F11, F12, F15, F16			
	4	0.876	0.052	0.742	7.45	F11, F12, F16, F24			
	5	0.860	0.032	0.924	8.79	F 3, F12, F15, F16, F28			
	5	0.889	0.033	0.915	8.87	F11, F12, F15, F16, F23			
						Dept. Polymer Engine University of N	ering linho		

FE	FEATURE SELECTION – Bankruptcy									
	SVM (NF + other objectives)									
	Experiment	С	γ	Objectives						
	c-svc1	1	10	$NF + F_m$						
	c-svc2	1	10	$NF + e_i$						
	c-svc3	1	10	$NF + e_{II}$						
	c-svc4	1	10	NF + F _m + e _l						
	c-svc11	[1,10]	[0.001,1]	NF + F _m						
	c-svc12	[1,10]	[0.001,1]	NF + e _i						
	c-svc13	[1,10]	[0.001,1]	NF + e ₁₁						
	c-svc14	[1,10]	[0.001,1]	NF + F _m + e _l						
	c-svc15	[1,10]	[0.001,1]	NF + R + e ₁						
	c-svc16	[1,10]	[0.001,1]	$R + e_i$						
				Dept. Polymer Engineering University of Minho	<mark>∛</mark>					

FEATURE SELECTION – BankruptcyConclusions
 In the present study a MOEA was applied in the problem of feature selection for bankruptcy prediction using two complementary classifier methods, LR and SVM; The proposed methodology is able to provide good solutions, not only by reducing the number of features but also making available to the decision maker useful information, concerning with both, the best features to be used and the best parameters of the classifier; An important characteristic of the MOEA strategy is the possibility of the decision maker to have multiple Pareto optimal solutions to perform the final analysis; The best performance is obtained when the classifier parameters are optimized simultaneously with the features. The approach followed here showed good potentialities in obtaining a good approximation to the ROC curve.
Dept. Polymer Engineering University of Minho

F	FEATURE SELECTION – Cardiac SPECT Diagnosis										
Di (S	 Diagnostic problem of cardiac Single Proton Emission Computed Tomography (SPECT) images (UCI Machine Learning Repository): Each of the patients is classified into two categories: normal and abnormal; 22 binary feature patterns. 										
	Exp. γ C TM LR TF Objectives										
	H01	10	1	K(10)	0.01	*	NA + PA				
'	H02	10	1	K(10)	0.01	*	NA + e _i	1			
	H03	10	1	K(10)	0.01	*	NA + e _{ll}				
	H04	10	1	K(10)	0.01	*	NA + F _m				
	H05	10	1	K(10)	0.01	*	NA + e _l + F _m				
	H06	[0.01,10] [1,150] K(10) [0.001,0.1] * NA + F _m		NA + F _m							
	H07	[0.01,10] [1,150] K(10) [0.001,0.1] * NA + e_i + F _m		NA + e _i + F _m							
'	H08	H08 10 1 H 0.01 0.7 NA+F _m				NA + F _m					
1	H09	[0.01,10]	[1,150]	Н	H [0.001,0.1] [0.2,0.9] NA + F _m		NA + F _m				
	H10	[0.01,10]	[1,150]	н	[0.001,0.1]	[0.2,0.9]	NA + e _l + F _m				
	H11	10	1	K(10)	0.01	*	NA + e _i + R				
	H12	[0.01,10]	[1,150]	K(10)	[0.001,0.1]	*	NA + e _i + R				
	H13	[0.01,10]	[1,150]	K(10)	[0.001,0.1]	*	NA + e _i + R + F _m				
*: Not Applicable Dept. Polymer Engineering University of Minho								<mark>》</mark>			

FEATURE SELECTION – Cardiac SPECT Diagnosis									
Results using ROC curves									
Experiment H13: run 1									
Sol	Decision Variab	les			C	Objectives	S		
001.	Features selected	γ	С	NF	FPrate	TPrate	F _m		
1	F3,F4,F11,F13,F14,F16,F18,F22	0.078	0.17	8	0.013	0.91	0.951		
2	F4, F11	0.040	0.43	2	0.975	1.00	0.886		
3	F11, F13	0.043	0.46	2	0.818	0.97	0.892		
	Dept. Polymer Engineering University of Minho								

