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Voting

Voting: obtaining a socially preferred option, given
preferences of the members of a group.

I Mary: beach � mountain � abroad

I John: mountain � beach � abroad

I Anna: abroad � mountain � beach

Which option should be the winner?



Social Choice Theory

I Social Choice Theory study Collective Decision Making

How to aggregate the preferences of the members of a group
to obtain a social preferences?

I Studied in Economy and Political Sciences.

I Problems: voting, preference aggregation, fair division, . . .
I History:

I Precursors in 18th Century: Condorcet, Borda.
I Research Area since 1950s.

I How to study it? How many different procedures?

Axiomatic approach



Social Choice Theory (II)

I Axiom/Properties:

Anonymity (A): the result should not depend on who votes
what.

I Characterisation:

A voting rule that satisfying anonymity, . . . , is equivalent to
Majority

I Impossibility/Possibility results:
I Example: Arrow’s theorem:

There exists no preference aggregation function defined on the
set of all preference profiles, satisfying Unanimity, IIA and
Non-Dictatorship.

I By the way, Kenneth J. Arrow received the Nobel Prize in
Economics in 1972.

I Manipulation:

Is it possible to get a result closer to my real preference by
lying?



Computational Social Choice

Computational issues on ...

I Computing a winner

I Manipulate/Vote strategically

I . . .

Can it be done effectively?
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Voting: Formal definition

Notation:

I N = {1, . . . , n} a finite set of voters (or agents).

I X = {x1, x2, x3, . . .} a set of alternatives/candidates/options.

I L(X ) a set of linear orders on X . Preferences/Ballots are
elements of L(X ).

I x �i y : voters i prefers x to y .

A voting procedure is a function F : L(X )n → X



Voting rules

There are many different voting procedures, including these:

I Plurality: elect the candidate ranked first most often

I Single Transferable Vote (STV): keep eliminating the plurality
loser until someone has an absolute majority

I Borda: each voter gives m − 1 points to the candidate they
rank first, m − 2 to the candidate they rank second, etc.

I Copeland: award 1 point to a candidate for each pairwise
majority contest won and 1 points for each draw

I Approval*: voters can approve of as many candidates as they
wish, and the candidate with the most approvals wins

* does not fit in the previous formal definition.



A family of voting rules: positional scoring rules

I N voters, p candidates - fixed list of p integers s1 ≥ . . . ≥ sp
I voter i ranks candidate x in position j ⇒ scorei (x) = sj
I winner: candidate maximising s(x) =

∑n
i=1 scorei (x) (+

tie-breaking if necessary)

Examples:

I s1 = 1, s2 = . . . = sp = 0→ plurality

I s1 = s2 = . . . = sp−1 = 1, sp = 0→ veto

I s1 = p − 1, s2 = p − 2, . . . , sp = 0→ Borda.

2 voters 1 voter 1 voter

c
b
d
a

a
b
d
c

d
a
b
c

plurality borda veto
a → 1 a → 6 a → 6
b → 0 b → 7 b → 6
c → 2 c → 6 c → 4
d → 1 d → 4 d → 4

c winner b winner a or b



Condorcet Winner

N(x , y) = #{i | x �i y}: number of voters who prefer x to y .

Condorcet winner: a candidate x such that ∀y 6= x ,N(x , y) > n
2

(= a candidate who beats any other candidate by a majority of
votes).

A Condorcet-consistent rule elects the Condorcet winner whenever
there is one.

a
b
d
c

d
b
c
a

c
ab
ba
d

2 voters out of 3: a � bb � a
2 voters out of 3: c � a
2 voters out of 3: a � d
2 voters out of 3: b � c
2 voters out of 3: b � d
2 voters out of 3: d � c

No Condorcet winnerb Condorcet winner Important note: no
scoring rule is Condorcet-consistent.



Voting in Combinatorial Domain

Voting itself can be computationally difficult. Sometimes the
domain have a combinatorial structure.

I Electing a committee of k members from amongst n
candidates.

I During a referendum with more than one question

voters may be asked to vote on several propositions.



Example

Suppose 13 voters are asked to each vote yes or no on three issues;
and we use the plurality rule for each issue independently to select
a winning combination:

I 3 voters each vote for YNN, NYN, NNY.

I 1 voter each votes for YYY, YYN, YNY, NYY.

I No voter votes for NNN.

But then NNN wins: 7 out of 13 vote no on each issue.
This is an instance of the paradox of multiple elections: the
winning combination receives the fewest number of votes.

Quoted by Jerome Lang from “S.J. Brams, D.M. Kilgour, and W.S. Zwicker.

The Paradox of Multiple Elections. Social Choice and Welfare, 15(2):211–236,

1998”.



Basic Solution Attempts

I Solution 1: just vote for combinations directly
I only feasible for very small problem instances
I Example: 3-seat committee, 10 candidates = 120 options

I Solution 2: vote for top k combinations only (e.g., k = 1)
I does address communication problem of Solution 1
I possibly nobody gets more than one vote (tie-breaking decides)

I Solution 3: make a small preselection of combinations to vote
on

I does solve the computational problems
I but who should select? (strategic control)



Combinatorial Vote

Idea: Ask voters to report their ballots by means of expressions in
a compact preference representation language and apply your
favourite voting procedure to the succinctly encoded ballots
received.

Lang (2004) calls this approach combinatorial vote.

Hint: compact representation language usually leads to increased
complexity for some operations.



Preference Representation Languages

Several languages have been proposed for the compact
representation of preference orders. See Lang (2004) for an
overview. Examples:

I Weighted goals: use propositional logic to express goals;
assign weights to express importance; aggregate (e.g.,
lexicographically)

I CP-nets: use a directed graph to express dependence between
issues; use conditional preference tables to specify preferences
on issue assuming those it depends on are fixed

All based on

I Set of variables V = {v1, . . . , vm}
I Each variable vi has a domain Di = {d i

1, . . . , d i
ki
}

I We will assume binary domains, so given vars {X ,Y ,Z}, a
possible state/option is {x¬yz}.



CP-Net (Boutilier, Brafman, Hoos and Poole, 99)

Language for specifying preferences on combinatorial domains
based on the notion of conditional preferential independence.

X Y Z

x � ¬x
x : y � ¬y
¬x : ¬y � y

x ∨ y : z � ¬z
¬x ∧ ¬z : ¬z � z

X independent of Y and Z ; Y independent of Z .
x : y � ¬y means that if X = x , then Y = y is preferred to
Y = ¬y , everything else being equal (ceteris paribus).

xyz � x¬yz xy¬z � x¬y¬z
¬x¬yz � ¬xyz ¬x¬y¬z � ¬xy¬z



Dominance problem

Question: Does a � b given the preference of an agent?

I Trivial in classical setting with linear orders.
I What if the options are represented using CP-Nets?

I Equivalent to finding a sequence of worsening flip sequence
from a to b (or an improving one from b to a)

I Example: {xyz} � {¬x¬y¬z}?
I {xyz} � {¬xyz} � {¬x¬yz} � {¬x¬y¬z}

x � ¬x
x : y � ¬y
¬x : ¬y � y

x ∨ y : z � ¬z
¬x ∧ ¬z : ¬z � z

Hint: sequence of improving can be seen as sequence of actions =
Planning



Classical Planning

Problem of finding a sequence of actions that achieves a goal,
starting from a given initial state.
Expressed in high-level language

Example

I Init: p, q

I Goal: g
I Actions:

a Precondition: p. Effect: r
b Precondition: q ∧ r . Effect: g
c Precondition: q. Effect: ¬q ∧ r

I Plan: a, b



Classical Planning Syntax

Classical planning problems P are tuples of the form
P = 〈F , I ,O,G 〉 where

I F : fluent symbols in the problem

I I : set of fluents true in the initial situation
I O: set of operators or actions. Every action a has

I a precondition Pre(a) given by a set of fluents
I an effect Eff (a) given by a set of fluents.

I G : set of fluents defining the goal



Classical Planning Model

I Languages such as Strips, ADL, PDDL, . . . , represent
models in compact form

I A classical planner is a solver over the class of models
given by:

I a state space S
I a known initial state s0 ∈ S
I a set SG ⊆ S of goal states
I actions A(s) ⊆ A applicable in each s ∈ S
I a deterministic transition function s ′ = f (a, s) for a ∈ A(s)
I uniform action costs c(a, s) = 1

I Given a problem P = 〈F , I ,O,G 〉, states of its corresponding
model are set of fluents of P

I Their solutions (plans) are sequences of applicable actions
that map s0 into SG



Planning (example)

Example

I Fluents: p, q, r , g

I Init: p, q

I Goal: g
I Actions:

a Precondition: p. Effect: r
b Precondition: q ∧ r . Effect: g
c Precondition: q. Effect: ¬q ∧ r

Model

I States: {p, q, r , g}, {p, q, r ,¬g}, {p, q,¬r , g}, . . .

I s0 = {p, q,¬r ,¬g}
I . . .



CP-net dominance as planning

Idea: create a planning problem whose plan corresponds to an
improving sequence.

I Given CP-net N with variables V , and a set of rules
C : y � ¬y . Does A � B.

I Let P a classical planning problem with
I Fluents: variables V
I Init: B
I Goal: A
I For each rule C : y � ¬y , create action a with

Prec(a) = C ∧ ¬y and Eff (a) = y

I P has a plan iff A � B in N.



Digression: What is planning anyway?

Planning is a form of symbolical reachability
(Enrico Giunchiglia. @UC3M - 2011)

I A plan is a particular sequence of transformations from a
propositional state into other, using the language Strips and
extensions.

I Typical criteria: length/cost of plan.

I CP-Net dominance does not depends on length of plan.



Towards combinatorial voting rules using CP-Nets

I Criteria:
I Soundness
I In relation with classical social choice theory
I Effective

I What kind of voting rules are more promising?

. . . based in Condorcet winner notion, where a candidate x
such that ∀y 6= x ,N(x , y) > n

2

I Joint work with Ulle Endriss.



Multiagent unanimous dominance through planning

I Given a set of variables V , and n agents, each one with a
CP-net Ni using variables V .
Does A � B for a majority of agents?.

I Let P a classical planning problem with
I Fluents: vi for each v ∈ V and i agent
I Init: Bi , for each agent i
I Goal: Ai , for each agent i
I For each rule C : y � ¬y of agent i , create action a with

Prec(a) = Ci ∧ ¬yi and Eff (a) = yi

I P has a plan iff A � B for all agents.
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Multiagent dominance through planning

I Does A � B for a majority of agents?.
I Let P a classical planning problem with

I Fluents: vi for each v ∈ V and i agent. Also an atom di for
each agent i .

I Init: Bi , for each agent i . All di false.
I Reward: r(di ) = 1, r(¬di ) = 0
I For each rule C : y � ¬y of agent i , create action a with

Prec(a) = Ci ∧ ¬yi and Eff (a) = yi .
Also for each agent i , action with precondition Prec(a) = Yi ,
and Eff (a) = di

I Reward of a plan a1, . . . , am with final state s =∑n
i=0 reward(di , s)

I P has a plan with reward > n
2 iff A � B for the majority of

agents.



Multiagent dominance through planning (II)

I Formulation is equivalent to obtain a plan for n
2 separated.

I Size of problem: grows linear in number of agents.
I Space-search grows exponential in size of planning problem.



Structure in Model-based AI

I SAT: unit propagation

I Bayesian Networks: variable elimination

I Planning: heuristics

I Constraints: . . .

I . . .



Sharing structure for multiagent dominance?

I Suppose the N voters can be divided in three groups A,B,C
such that

I Voters among a group have exactly the same CP-Net
I Let’s call them NA, NB , NC .

I If |A|+ |B| > n
2 , then A � B for the majority of agents.

I Two ideas
I Plan for each group separated
I Create a planning problem with variables labeled vA, vB , vC .

I Further improvement by sharing variables in more general
cases. Work in progress!



Towards combinatorial voting rules using partial orders

I Classical framework: linear orders

I CP-nets defined a partial order. It’s probably the same for
other languages.

I Redefine preferences for include indifference



Partial order preferences

Under what circumstances would we be willing to say that the
group of agents N prefers x to y? Let’s focus on having only
two options: x and y .

I P({x , y} := {x � y}, {x ≺ y}, {x ./ y}, the set of strict
partial orders on x , y .

x ./ y is not indifference, but incomparability.

I A profile R = (R1, . . . ,Rn) ∈ P({x , y})N is a vector of such
preferences order, one for each agent.

I An aggregation rule F : P({x , y})N → P({x , y}) maps each
each profile to a collective preference order.

I Let NR
x�y denote the set of individuals who prefer x to y in R.

Similarly for NR
x≺y , NR

x./y .



Possible Definitions of Majority Dominance

I Unanimous dominance: given profile R, x dominates y
under the unanimous rule if NR

x�y = N .

I Simple majority dominance: given profile R, x dominates y
under the unanimous rule if |NR

x�y | > |NR
x≺y |

I Absolute majority dominance: given profile R, x dominates
y under the unanimous rule if |NR

x�y | > n
2

Notice that Absolute majority dominance is useful deciding the
Condorcet winner.



Axiomatic Analysis

I F is anonymous (A),

I F is neutral (N), if swapping x and y everywhere in the input
profile results in a swap of x and y in the output.

I F satisfies preference monotonicity (PM), if additional
support for a winner or diminished support for her opponent
will never turn the former into a loser.

I F satisfies uncertainty monotonicity (UM), if an additional
voter is undecided in an undecided election, the election will
remain undecided.

I F satisfies unanimous uncertainty elimination (UUE), if for
a previously undecided election all uncertain voters suddenly
swing one way, then their will must be implemented.



Absolute Majority Rule

Theorem:An aggregation rule satisfies axioms (A), (N), (PM),
(UM) and (UUE) iff it is the absolute majority rule.
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Summary

I Computational Social Choice study computational issues
regarding collective decisions.

I Combinatorial Voting deals with domains where options are
expressed in term of variables.

I From a classical point of view, Combinatorial Voting is not
different than classical one, but very different from a
computational point of view.

I CP-Nets is a language for representing the preferences of
agents.

I Dominance between options can be formulated as a planning
problem.

I Effective planning techniques could be useful for effective and
practical Computational Social Choice.
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