
Probabilistic Planning

Blai Bonet

Universidad Simón Boĺıvar

5th Int. Seminar on New Issues in AI

Madrid, Spain 2012

(. . . references at the end . . .)

General Ideas

‘Planning’ is the model-based approach for autonomous behaviour

Focus on most common planning models and algorithms for:

• non-deterministic (probabilistic) actuators (actions)

Ultimate goal is to build planners that solve a class of models

(Intro based on IJCAI’11 tutorial by H. Geffner)

Models, Languages, and Solvers

A planner is a solver over a class of models (problems)

Model =⇒ Planner =⇒ Controller

• What is the model? How is the model specified?

• What is a controller? How is the controller specified?

Models, Languages, and Solvers

A planner is a solver over a class of models (problems)

Model =⇒ Planner =⇒ Controller

• What is the model? How is the model specified?

• What is a controller? How is the controller specified?

Models

Broad classes given by problem features:

• actions: deterministic, non-deterministic, probabilistic

• agent’s information: complete, partial, none

• goals: reachability, maintainability, fairness, LTL, . . .

• costs: non-uniform, rewards, non-Markovian, . . .

• horizon: finite or infinite

• time: discrete or continuous

• . . .

. . . and combinations and restrictions that define interesting
subclasses

Models

Broad classes given by problem features:

• actions: deterministic, non-deterministic, probabilistic

• agent’s information: complete, partial, none

• goals: reachability, maintainability, fairness, LTL, . . .

• costs: non-uniform, rewards, non-Markovian, . . .

• horizon: finite or infinite

• time: discrete or continuous

• . . .

. . . and combinations and restrictions that define interesting
subclasses

Models: Controllers

Solution for a problem is a controller that tells the agent what to do
at each time point

Form of the controller depends on the problem class

E.g., controllers for a deterministic problem with full information aren’t of
the same form as controllers for a probabilistic problem with incomplete
information

Characteristics of controllers:

• consistency: is the action selected an executable action?

• validity: does the selected action sequence achieve the goal?

• completeness: is there a controller that solves the problem?

Models: Controllers

Solution for a problem is a controller that tells the agent what to do
at each time point

Form of the controller depends on the problem class

E.g., controllers for a deterministic problem with full information aren’t of
the same form as controllers for a probabilistic problem with incomplete
information

Characteristics of controllers:

• consistency: is the action selected an executable action?

• validity: does the selected action sequence achieve the goal?

• completeness: is there a controller that solves the problem?

Languages

Models and controllers specified with representation languages

Expressivity and succinctness have impact on the complexity for
computing a solution

Different types of languages:

• flat languages: states and actions have no (internal) structure
(good for understanding the model, solutions and algorithms)

• factored languages: states and actions are specified with variables
(good for describing complex problem with few bits)

• implicit, thru functions: states and actions directly coded
(good for efficiency, used to deploy)

Languages

Models and controllers specified with representation languages

Expressivity and succinctness have impact on the complexity for
computing a solution

Different types of languages:

• flat languages: states and actions have no (internal) structure
(good for understanding the model, solutions and algorithms)

• factored languages: states and actions are specified with variables
(good for describing complex problem with few bits)

• implicit, thru functions: states and actions directly coded
(good for efficiency, used to deploy)

Languages

Models and controllers specified with representation languages

Expressivity and succinctness have impact on the complexity for
computing a solution

Different types of languages:

• flat languages: states and actions have no (internal) structure
(good for understanding the model, solutions and algorithms)

• factored languages: states and actions are specified with variables
(good for describing complex problem with few bits)

• implicit, thru functions: states and actions directly coded
(good for efficiency, used to deploy)

Languages

Models and controllers specified with representation languages

Expressivity and succinctness have impact on the complexity for
computing a solution

Different types of languages:

• flat languages: states and actions have no (internal) structure
(good for understanding the model, solutions and algorithms)

• factored languages: states and actions are specified with variables
(good for describing complex problem with few bits)

• implicit, thru functions: states and actions directly coded
(good for efficiency, used to deploy)

Solvers

Algorithms whose input is a model and output is a controller

Characteristics of solvers:

• soundness: the output controller is a valid controller

• completeness: if there is a controller that solves problem, the
solver outputs one such controller; else, it reports unsolvability

• optimality: the output controller is best (under certain criteria)

Three Levels

• Mathematical models for crisp formulation of classes and
solutions

• Algorithms that solve these models, which are specified with . . .

• Languages that describe the inputs and outputs

Outline

• Introduction (almost done!)

• Part I: Markov Decision Processes (MDPs)

• Part II: Algorithms

• Part III: Heuristics

• Part IV: Monte-Carlo Planning

Example: Collecting Colored Balls

Task: agent picks and delivers balls

Goal: all balls delivered in correct places

Actions: Move, Pick, Drop

Costs: 1 for each action, -100 for ‘good’ drop

• if deterministic actions and initial state known, problem is classical

• if stochastic actions and state is observable, problem is MDP

• if stochastic actions and partial information, problem is POMDP

Different combinations of uncertainty and feedback:
three problems, three models

R

B

G

Example: Collecting Colored Balls

Task: agent picks and delivers balls

Goal: all balls delivered in correct places

Actions: Move, Pick, Drop

Costs: 1 for each action, -100 for ‘good’ drop

• if deterministic actions and initial state known, problem is classical

• if stochastic actions and state is observable, problem is MDP

• if stochastic actions and partial information, problem is POMDP

Different combinations of uncertainty and feedback:
three problems, three models

R

B

G

Example: Collecting Colored Balls

Task: agent picks and delivers balls

Goal: all balls delivered in correct places

Actions: Move, Pick, Drop

Costs: 1 for each action, -100 for ‘good’ drop

• if deterministic actions and initial state known, problem is classical

• if stochastic actions and state is observable, problem is MDP

• if stochastic actions and partial information, problem is POMDP

Different combinations of uncertainty and feedback:
three problems, three models

R

B

G

Another Example: Wumpus World

Performance measure:

• Gold (reward 1000), death (cost 1000)

• 1 unit cost per movement, 10 for throwing arrow

Environment:

• Cells adjacent to Wumpus smell

• Cells adjacent to Pit are breezy

• Glitter if in same cell as gold

• Shooting kill Wumpus if facing it

• Only one arrow available for shooting

• Grabbing gold picks it if in same cell

Actuators: TurnLeft, TurnRight, MoveForward, Grab, Shoot

Sensors: Smell, Breeze, Glitter

Part I

Markov Decision Processes (MDPs)

Goals of Part I: MDPs

• Models for probabilistic planning

I Understand the underlying model

I Understand the solutions for these models

I Familiarity with notation and formal methods

Classical Planning: Simplest Model

Planning with deterministic actions under complete knowledge

Characterized by:

• a finite state space S

• a finite set of actions A; A(s) are actions executable at s

• deterministic transition function f : S ×A→ S such that
f(s, a) is state after applying action a ∈ A(s) in state s

• known initial state sinit

• subset G ⊆ S of goal states

• positive costs c(s, a) of applying action a in state s
(often, c(s, a) only depends on a)

Abstract model that works at ‘flat’ representation of problem

Classical Planning: Simplest Model

Planning with deterministic actions under complete knowledge

Characterized by:

• a finite state space S

• a finite set of actions A; A(s) are actions executable at s

• deterministic transition function f : S ×A→ S such that
f(s, a) is state after applying action a ∈ A(s) in state s

• known initial state sinit

• subset G ⊆ S of goal states

• positive costs c(s, a) of applying action a in state s
(often, c(s, a) only depends on a)

Abstract model that works at ‘flat’ representation of problem

Classical Planning: Blocksworld

A B
C

A
C
B

C

A BA C

B

B
A
C

C
A
B

B C
A A

B C

A
C
B

A B C
B
A C

A

C
B

A
B
C

[Ivan Bratko]

Classical Planning: Solutions

Since the initial state is known and the effects of the actions can be
predicted, a controller is a fixed action sequence π = 〈a0, a1, . . . , an〉

The sequence defines a state trajectory 〈s0, s1, . . . , sn+1〉 where:

• s0 = sinit is the initial state

• ai ∈ A(si) is an applicable action at state si, i = 0, . . . , n

• si+1 = f(si, ai) is the result of applying action ai at state si

The controller is valid (i.e., solution) iff sn+1 is a goal state

Its cost is c(π) = c(s0, a0) + c(s1, a1) + · · ·+ c(sn, an)

It is optimal if its cost is minimum among all solutions

Actions with Uncertain Effects

• Certain problems have actions whose behaviour is
non-deterministic

E.g., tossing a coin or rolling a dice are actions whose outcomes
cannot be predicted with certainty

• In other cases, uncertainty is the result of a coarse model
that doesn’t include all the information required to predict
the outcomes of actions

In both cases, it is necessary to consider problems with
non-deterministic actions

Extending the Classical Model with Non-Det
Actions but Complete Information

• A finite state space S

• a finite set of actions A; A(s) are actions executable at sS

• non-deterministic transition function F : S ×A→ 2S such that
F (s, a) is set of states that may result after executing a at s

• initial state sinit

• subset G ⊆ S of goal states

• positive costs c(s, a) of applying action a in state s

States are assumed to be fully observable

Mathematical Model for Probabilistic Planning

• A finite state space S

• a finite set of actions A; A(s) are actions executable at sS

• stochastic transitions given by distributions p(·|s, a) where
p(s′|s, a) is the probability of reaching s′ when a is executed at s

• initial state sinit

• subset G ⊆ S of goal states

• positive costs c(s, a) of applying action a in state s

States are assumed to be fully observable

Example: Simple Problem

.05

1a0

a0a1

a1

a0

a1

.95
.4

.7

.3

.3
.1

.1

.2

.2

.4
.4

.4

.5

S1

S2

S0

S3

• 4 states; S = {s0, . . . , s3}
• 2 actions; A = {a0, a1}
• 1 goal; G = {s3}

• p(s2|s0, a1) = 1.0

• p(s0|s1, a0) = 0.7

• p(s2|s2, a1) = 0.4

Example: Simple Problem

.05

1a0

a0a1

a1

a0

a1

.95
.4

.7

.3

.3
.1

.1

.2

.2

.4
.4

.4

.5

S1

S2

S0

S3

• 4 states; S = {s0, . . . , s3}
• 2 actions; A = {a0, a1}
• 1 goal; G = {s3}

• p(s2|s0, a1) = 1.0

• p(s0|s1, a0) = 0.7

• p(s2|s2, a1) = 0.4

Example: Simple Problem

.05

1a0

a0a1

a1

a0

a1

.95
.4

.7

.3

.3
.1

.1

.2

.2

.4
.4

.4

.5

S1

S2

S0

S3

• 4 states; S = {s0, . . . , s3}
• 2 actions; A = {a0, a1}
• 1 goal; G = {s3}

• p(s2|s0, a1) = 1.0

• p(s0|s1, a0) = 0.7

• p(s2|s2, a1) = 0.4

Example: Simple Problem

.05

1a0

a0a1

a1

a0

a1

.95
.4

.7

.3

.3
.1

.1

.2

.2

.4
.4

.4

.5

S1

S2

S0

S3

• 4 states; S = {s0, . . . , s3}
• 2 actions; A = {a0, a1}
• 1 goal; G = {s3}

• p(s2|s0, a1) = 1.0

• p(s0|s1, a0) = 0.7

• p(s2|s2, a1) = 0.4

Controllers

A controller cannot be a sequence of actions because the agent
cannot predict with certainty what would be the future state

However, since states are fully observable, the agent can be
prepared for any possible future state

Such controller is called contingent with full observability

Contingent Plans

Many ways to represent contingent plans. Most general correspond
to sequence of functions that map states into actions

Definition

A contingent plan is a sequence π = 〈µ0, µ1, . . .〉 of decision
functions µi : S → A such that the agent executes action µi(s)
when the state at time i is s

The plan is consistent if for every s and i, µi(s) ∈ A(s)

Because of non-determinism, a fixed plan π executed at fixed initial
state s may generate more than one state trajectory

Contingent Plans

Many ways to represent contingent plans. Most general correspond
to sequence of functions that map states into actions

Definition

A contingent plan is a sequence π = 〈µ0, µ1, . . .〉 of decision
functions µi : S → A such that the agent executes action µi(s)
when the state at time i is s

The plan is consistent if for every s and i, µi(s) ∈ A(s)

Because of non-determinism, a fixed plan π executed at fixed initial
state s may generate more than one state trajectory

Contingent Plans

Many ways to represent contingent plans. Most general correspond
to sequence of functions that map states into actions

Definition

A contingent plan is a sequence π = 〈µ0, µ1, . . .〉 of decision
functions µi : S → A such that the agent executes action µi(s)
when the state at time i is s

The plan is consistent if for every s and i, µi(s) ∈ A(s)

Because of non-determinism, a fixed plan π executed at fixed initial
state s may generate more than one state trajectory

Contingent Plans

Many ways to represent contingent plans. Most general correspond
to sequence of functions that map states into actions

Definition

A contingent plan is a sequence π = 〈µ0, µ1, . . .〉 of decision
functions µi : S → A such that the agent executes action µi(s)
when the state at time i is s

The plan is consistent if for every s and i, µi(s) ∈ A(s)

Because of non-determinism, a fixed plan π executed at fixed initial
state s may generate more than one state trajectory

Example: Solution

µ0 = (a0, a0, a0)

µ1 = (a0, a0, a1)

µ2 = (a0, a1, a0)

µ3 = (a0, a1, a1)

µ4 = (a1, a0, a0)

µ5 = (a1, a0, a1)

µ6 = (a1, a1, a0)

µ7 = (a1, a1, a1)

.05

1a0

a0a1

a1

a0

a1

.95
.4

.7

.3

.3
.1

.1

.2

.2

.4
.4

.4

.5

S1

S2

S0

S3

π0 = 〈µ0, µ1, µ0, µ1, µ0, µ1, µ0, µ1, µ0, . . .〉
π1 = 〈µ5, µ5, µ5, µ5, µ5, . . .〉
π2 = 〈µ0, µ1, µ2, µ3, µ4, µ5, µ6, µ7, µ0, . . .〉
π3 = 〈µ2, µ3, µ5, µ7, µ2, . . .〉

Contingent Plans

For plan π = 〈µ0, µ1, . . .〉 and initial state s, the possible trajectories
are the sequences 〈s0, s1, . . .〉 such that

• s0 = s

• si+1 ∈ F (si, µi(si))
• if si ∈ G, then si+1 = si ←− (mathematically convenient)

How do we define the cost of a controller?

What is a valid controller (solution)?

How do we compare two controllers?

Contingent Plans

For plan π = 〈µ0, µ1, . . .〉 and initial state s, the possible trajectories
are the sequences 〈s0, s1, . . .〉 such that

• s0 = s

• si+1 ∈ F (si, µi(si))
• if si ∈ G, then si+1 = si ←− (mathematically convenient)

How do we define the cost of a controller?

What is a valid controller (solution)?

How do we compare two controllers?

Contingent Plans

For plan π = 〈µ0, µ1, . . .〉 and initial state s, the possible trajectories
are the sequences 〈s0, s1, . . .〉 such that

• s0 = s

• si+1 ∈ F (si, µi(si))
• if si ∈ G, then si+1 = si ←− (mathematically convenient)

How do we define the cost of a controller?

What is a valid controller (solution)?

How do we compare two controllers?

Contingent Plans

For plan π = 〈µ0, µ1, . . .〉 and initial state s, the possible trajectories
are the sequences 〈s0, s1, . . .〉 such that

• s0 = s

• si+1 ∈ F (si, µi(si))
• if si ∈ G, then si+1 = si ←− (mathematically convenient)

How do we define the cost of a controller?

What is a valid controller (solution)?

How do we compare two controllers?

Example: Trajectories

µ0 = (a0, a0, a0)

µ1 = (a0, a0, a1)

µ2 = (a0, a1, a0)

µ3 = (a0, a1, a1)

µ4 = (a1, a0, a0)

µ5 = (a1, a0, a1)

µ6= (a1, a1, a0)

µ7 = (a1, a1, a1)

.05

1a0

a0a1

a1

a0

a1

.95
.4

.7

.3

.3
.1

.1

.2

.2

.4
.4

.4

.5

S1

S2

S0

S3

π = 〈µ6, µ6, µ6, . . .〉

Trajectories starting at s0:
〈s0, s2, s3, s3, . . .〉
〈s0, s2, s0, s2, s3, . . .〉
〈s0, s2, s2, s2, s2, s2, s3, . . .〉

Cost of Plans (Intuition)

Each trajectory τ = 〈s0, s1, . . .〉 has probability

P (τ) = p(s1|s0, µ0(s0)) · p(s2|s1, µ1(s1)) · · ·

where p(s|s, a) = 1 for all a ∈ A when s ∈ G (convenience)

Each trajectory has cost

c(τ) = c(s0, µ0(s0)) + c(s1, µ1(s1)) + · · ·

where c(s, a) = 0 for all a ∈ A and s ∈ G (convenience)

Therefore, the cost of policy π at state s is

Jπ(s) =
∑

τ c(τ) · P (τ) (expected cost)

Cost of Plans (Intuition)

Each trajectory τ = 〈s0, s1, . . .〉 has probability

P (τ) = p(s1|s0, µ0(s0)) · p(s2|s1, µ1(s1)) · · ·

where p(s|s, a) = 1 for all a ∈ A when s ∈ G (convenience)

Each trajectory has cost

c(τ) = c(s0, µ0(s0)) + c(s1, µ1(s1)) + · · ·

where c(s, a) = 0 for all a ∈ A and s ∈ G (convenience)

Therefore, the cost of policy π at state s is

Jπ(s) =
∑

τ c(τ) · P (τ) (expected cost)

Cost of Plans (Intuition)

Each trajectory τ = 〈s0, s1, . . .〉 has probability

P (τ) = p(s1|s0, µ0(s0)) · p(s2|s1, µ1(s1)) · · ·

where p(s|s, a) = 1 for all a ∈ A when s ∈ G (convenience)

Each trajectory has cost

c(τ) = c(s0, µ0(s0)) + c(s1, µ1(s1)) + · · ·

where c(s, a) = 0 for all a ∈ A and s ∈ G (convenience)

Therefore, the cost of policy π at state s is

Jπ(s) =
∑

τ c(τ) · P (τ) (expected cost)

Example: Cost of Plan

Policy: π = 〈µ6, µ6, µ6, . . .〉

Trajectories can be reduced to (using p = 2
10 and q = 8

10):

τ = 〈s0, s2, s3, s3, . . .〉 with P (τ) = p and c(τ) = 1 + 2

τ = 〈s0, s2, s0, s2, s3, s3, . . .〉 with P (τ) = pq and c(τ) = 2 + 2 · 2

τ = 〈s0, s2, s0, s2, s0, s2, s3, . . .〉 with P (τ) = pq2 and c(τ) = 3 + 3 · 2

τ = 〈 s0, s2︸ ︷︷ ︸
k + 1 times

, s3, s3, . . .〉 with P (τ) = pqk and c(τ) = 3(k + 1)

Cost of policy from s0:

Jπ(s0) =
∑
k≥0

3(k + 1)pqk

= 3p
∑
k≥0

(k + 1)qk = 3p
∑
k≥0

[kqk + qk]

= 3p

[
q

(1− q)2 +
1

1− q

]
=

3p

(1− q)2 = 15

Example: Cost of Plan

Policy: π = 〈µ6, µ6, µ6, . . .〉

Trajectories can be reduced to (using p = 2
10 and q = 8

10):

τ = 〈s0, s2, s3, s3, . . .〉 with P (τ) = p and c(τ) = 1 + 2

τ = 〈s0, s2, s0, s2, s3, s3, . . .〉 with P (τ) = pq and c(τ) = 2 + 2 · 2

τ = 〈s0, s2, s0, s2, s0, s2, s3, . . .〉 with P (τ) = pq2 and c(τ) = 3 + 3 · 2

τ = 〈 s0, s2︸ ︷︷ ︸
k + 1 times

, s3, s3, . . .〉 with P (τ) = pqk and c(τ) = 3(k + 1)

Cost of policy from s0:

Jπ(s0) =
∑
k≥0

3(k + 1)pqk

= 3p
∑
k≥0

(k + 1)qk = 3p
∑
k≥0

[kqk + qk]

= 3p

[
q

(1− q)2 +
1

1− q

]
=

3p

(1− q)2 = 15

Example: Cost of Plan

Policy: π = 〈µ6, µ6, µ6, . . .〉

Trajectories can be reduced to (using p = 2
10 and q = 8

10):

τ = 〈s0, s2, s3, s3, . . .〉 with P (τ) = p and c(τ) = 1 + 2

τ = 〈s0, s2, s0, s2, s3, s3, . . .〉 with P (τ) = pq and c(τ) = 2 + 2 · 2

τ = 〈s0, s2, s0, s2, s0, s2, s3, . . .〉 with P (τ) = pq2 and c(τ) = 3 + 3 · 2

τ = 〈 s0, s2︸ ︷︷ ︸
k + 1 times

, s3, s3, . . .〉 with P (τ) = pqk and c(τ) = 3(k + 1)

Cost of policy from s0:

Jπ(s0) =
∑
k≥0

3(k + 1)pqk

= 3p
∑
k≥0

(k + 1)qk = 3p
∑
k≥0

[kqk + qk]

= 3p

[
q

(1− q)2 +
1

1− q

]
=

3p

(1− q)2 = 15

Example: Cost of Plan

Policy: π = 〈µ6, µ6, µ6, . . .〉

Trajectories can be reduced to (using p = 2
10 and q = 8

10):

τ = 〈s0, s2, s3, s3, . . .〉 with P (τ) = p and c(τ) = 1 + 2

τ = 〈s0, s2, s0, s2, s3, s3, . . .〉 with P (τ) = pq and c(τ) = 2 + 2 · 2

τ = 〈s0, s2, s0, s2, s0, s2, s3, . . .〉 with P (τ) = pq2 and c(τ) = 3 + 3 · 2

τ = 〈 s0, s2︸ ︷︷ ︸
k + 1 times

, s3, s3, . . .〉 with P (τ) = pqk and c(τ) = 3(k + 1)

Cost of policy from s0:

Jπ(s0) =
∑
k≥0

3(k + 1)pqk

= 3p
∑
k≥0

(k + 1)qk = 3p
∑
k≥0

[kqk + qk]

= 3p

[
q

(1− q)2 +
1

1− q

]
=

3p

(1− q)2 = 15

Example: Cost of Plan

Policy: π = 〈µ6, µ6, µ6, . . .〉

Trajectories can be reduced to (using p = 2
10 and q = 8

10):

τ = 〈s0, s2, s3, s3, . . .〉 with P (τ) = p and c(τ) = 1 + 2

τ = 〈s0, s2, s0, s2, s3, s3, . . .〉 with P (τ) = pq and c(τ) = 2 + 2 · 2

τ = 〈s0, s2, s0, s2, s0, s2, s3, . . .〉 with P (τ) = pq2 and c(τ) = 3 + 3 · 2

τ = 〈 s0, s2︸ ︷︷ ︸
k + 1 times

, s3, s3, . . .〉 with P (τ) = pqk and c(τ) = 3(k + 1)

Cost of policy from s0:

Jπ(s0) =
∑
k≥0

3(k + 1)pqk

= 3p
∑
k≥0

(k + 1)qk = 3p
∑
k≥0

[kqk + qk]

= 3p

[
q

(1− q)2 +
1

1− q

]
=

3p

(1− q)2 = 15

Example: Cost of Plan

Policy: π = 〈µ6, µ6, µ6, . . .〉

Trajectories can be reduced to (using p = 2
10 and q = 8

10):

τ = 〈s0, s2, s3, s3, . . .〉 with P (τ) = p and c(τ) = 1 + 2

τ = 〈s0, s2, s0, s2, s3, s3, . . .〉 with P (τ) = pq and c(τ) = 2 + 2 · 2

τ = 〈s0, s2, s0, s2, s0, s2, s3, . . .〉 with P (τ) = pq2 and c(τ) = 3 + 3 · 2

τ = 〈 s0, s2︸ ︷︷ ︸
k + 1 times

, s3, s3, . . .〉 with P (τ) = pqk and c(τ) = 3(k + 1)

Cost of policy from s0:

Jπ(s0) =
∑
k≥0

3(k + 1)pqk = 3p
∑
k≥0

(k + 1)qk

= 3p
∑
k≥0

[kqk + qk]

= 3p

[
q

(1− q)2 +
1

1− q

]
=

3p

(1− q)2 = 15

Example: Cost of Plan

Policy: π = 〈µ6, µ6, µ6, . . .〉

Trajectories can be reduced to (using p = 2
10 and q = 8

10):

τ = 〈s0, s2, s3, s3, . . .〉 with P (τ) = p and c(τ) = 1 + 2

τ = 〈s0, s2, s0, s2, s3, s3, . . .〉 with P (τ) = pq and c(τ) = 2 + 2 · 2

τ = 〈s0, s2, s0, s2, s0, s2, s3, . . .〉 with P (τ) = pq2 and c(τ) = 3 + 3 · 2

τ = 〈 s0, s2︸ ︷︷ ︸
k + 1 times

, s3, s3, . . .〉 with P (τ) = pqk and c(τ) = 3(k + 1)

Cost of policy from s0:

Jπ(s0) =
∑
k≥0

3(k + 1)pqk = 3p
∑
k≥0

(k + 1)qk = 3p
∑
k≥0

[kqk + qk]

= 3p

[
q

(1− q)2 +
1

1− q

]
=

3p

(1− q)2 = 15

Example: Cost of Plan

Policy: π = 〈µ6, µ6, µ6, . . .〉

Trajectories can be reduced to (using p = 2
10 and q = 8

10):

τ = 〈s0, s2, s3, s3, . . .〉 with P (τ) = p and c(τ) = 1 + 2

τ = 〈s0, s2, s0, s2, s3, s3, . . .〉 with P (τ) = pq and c(τ) = 2 + 2 · 2

τ = 〈s0, s2, s0, s2, s0, s2, s3, . . .〉 with P (τ) = pq2 and c(τ) = 3 + 3 · 2

τ = 〈 s0, s2︸ ︷︷ ︸
k + 1 times

, s3, s3, . . .〉 with P (τ) = pqk and c(τ) = 3(k + 1)

Cost of policy from s0:

Jπ(s0) =
∑
k≥0

3(k + 1)pqk = 3p
∑
k≥0

(k + 1)qk = 3p
∑
k≥0

[kqk + qk]

= 3p

[
q

(1− q)2 +
1

1− q

]

=
3p

(1− q)2 = 15

Example: Cost of Plan

Policy: π = 〈µ6, µ6, µ6, . . .〉

Trajectories can be reduced to (using p = 2
10 and q = 8

10):

τ = 〈s0, s2, s3, s3, . . .〉 with P (τ) = p and c(τ) = 1 + 2

τ = 〈s0, s2, s0, s2, s3, s3, . . .〉 with P (τ) = pq and c(τ) = 2 + 2 · 2

τ = 〈s0, s2, s0, s2, s0, s2, s3, . . .〉 with P (τ) = pq2 and c(τ) = 3 + 3 · 2

τ = 〈 s0, s2︸ ︷︷ ︸
k + 1 times

, s3, s3, . . .〉 with P (τ) = pqk and c(τ) = 3(k + 1)

Cost of policy from s0:

Jπ(s0) =
∑
k≥0

3(k + 1)pqk = 3p
∑
k≥0

(k + 1)qk = 3p
∑
k≥0

[kqk + qk]

= 3p

[
q

(1− q)2 +
1

1− q

]
=

3p

(1− q)2

= 15

Example: Cost of Plan

Policy: π = 〈µ6, µ6, µ6, . . .〉

Trajectories can be reduced to (using p = 2
10 and q = 8

10):

τ = 〈s0, s2, s3, s3, . . .〉 with P (τ) = p and c(τ) = 1 + 2

τ = 〈s0, s2, s0, s2, s3, s3, . . .〉 with P (τ) = pq and c(τ) = 2 + 2 · 2

τ = 〈s0, s2, s0, s2, s0, s2, s3, . . .〉 with P (τ) = pq2 and c(τ) = 3 + 3 · 2

τ = 〈 s0, s2︸ ︷︷ ︸
k + 1 times

, s3, s3, . . .〉 with P (τ) = pqk and c(τ) = 3(k + 1)

Cost of policy from s0:

Jπ(s0) =
∑
k≥0

3(k + 1)pqk = 3p
∑
k≥0

(k + 1)qk = 3p
∑
k≥0

[kqk + qk]

= 3p

[
q

(1− q)2 +
1

1− q

]
=

3p

(1− q)2 = 15

Cost of Plans (Formal)

Under fixed controller π = 〈µ0, µ1, . . .〉, the system becomes a
Markov chain with transition probabilities pi(s

′|s) = p(s′|s, µi(s))

These transitions define probabilities P πs and expectations Eπs
over the trajectories generated by π starting at s

Let Xi be the r.v. that is the state of the chain at time i; e.g.,

• P πs (X10 = s′) is the probability that the state at time 10
will be s′ given that we execute π starting from s

• Eπs [c(X10, µ10(X10))] is the expected cost incurred by the
agent at time 10 given that we execute π starting from s

Cost of Plans (Formal)

Under fixed controller π = 〈µ0, µ1, . . .〉, the system becomes a
Markov chain with transition probabilities pi(s

′|s) = p(s′|s, µi(s))

These transitions define probabilities P πs and expectations Eπs
over the trajectories generated by π starting at s

Let Xi be the r.v. that is the state of the chain at time i; e.g.,

• P πs (X10 = s′) is the probability that the state at time 10
will be s′ given that we execute π starting from s

• Eπs [c(X10, µ10(X10))] is the expected cost incurred by the
agent at time 10 given that we execute π starting from s

Cost of Plans (Formal)

Under fixed controller π = 〈µ0, µ1, . . .〉, the system becomes a
Markov chain with transition probabilities pi(s

′|s) = p(s′|s, µi(s))

These transitions define probabilities P πs and expectations Eπs
over the trajectories generated by π starting at s

Let Xi be the r.v. that is the state of the chain at time i; e.g.,

• P πs (X10 = s′) is the probability that the state at time 10
will be s′ given that we execute π starting from s

• Eπs [c(X10, µ10(X10))] is the expected cost incurred by the
agent at time 10 given that we execute π starting from s

Cost of Plans (Formal)

Under fixed controller π = 〈µ0, µ1, . . .〉, the system becomes a
Markov chain with transition probabilities pi(s

′|s) = p(s′|s, µi(s))

These transitions define probabilities P πs and expectations Eπs
over the trajectories generated by π starting at s

Let Xi be the r.v. that is the state of the chain at time i; e.g.,

• P πs (X10 = s′) is the probability that the state at time 10
will be s′ given that we execute π starting from s

• Eπs [c(X10, µ10(X10))] is the expected cost incurred by the
agent at time 10 given that we execute π starting from s

Cost of Plans (Formal)

Under fixed controller π = 〈µ0, µ1, . . .〉, the system becomes a
Markov chain with transition probabilities pi(s

′|s) = p(s′|s, µi(s))

These transitions define probabilities P πs and expectations Eπs
over the trajectories generated by π starting at s

Let Xi be the r.v. that is the state of the chain at time i; e.g.,

• P πs (X10 = s′) is the probability that the state at time 10
will be s′ given that we execute π starting from s

• Eπs [c(X10, µ10(X10))] is the expected cost incurred by the
agent at time 10 given that we execute π starting from s

Cost of Controllers (Formal)

Definition

The cost of policy π at state s is defined as

Jπ(s) = Eπs

[∞∑
i=0

c(Xi, µi(Xi))

]

• Jπ is a vector of costs Jπ(s) for each state s

• Jπ is called the value function for π

• Policy π is better than π′ at state s iff Jπ(s) < Jπ′(s)

Solutions (Valid Controllers)

Definition

Policy π is valid for state s if π reaches a goal with probability 1
from state s

Definition

A policy π is valid if it is valid for each state s

In probabilistic planning, we are interested in
solutions valid for the initial state

Solutions (Valid Controllers)

Definition

Policy π is valid for state s if π reaches a goal with probability 1
from state s

Definition

A policy π is valid if it is valid for each state s

In probabilistic planning, we are interested in
solutions valid for the initial state

Time to Arrive to the Goal

We want to calculate the “time to arrive to the goal”,
for fixed policy π and initial state s

This time is a r.v. because there are many possible trajectories,
each with different probability

For trajectory τ = 〈X0, X1, . . .〉, let T (τ) = min{i : Xi ∈ G}
(i.e. the time of arrival to the goal)

If τ doesn’t contain a goal state, T (τ) =∞

The validity of π is expressed in symbols as:

• π is valid for s iff P πs (T =∞) = 0

• π is valid iff it is valid for all states

Time to Arrive to the Goal

We want to calculate the “time to arrive to the goal”,
for fixed policy π and initial state s

This time is a r.v. because there are many possible trajectories,
each with different probability

For trajectory τ = 〈X0, X1, . . .〉, let T (τ) = min{i : Xi ∈ G}
(i.e. the time of arrival to the goal)

If τ doesn’t contain a goal state, T (τ) =∞

The validity of π is expressed in symbols as:

• π is valid for s iff P πs (T =∞) = 0

• π is valid iff it is valid for all states

Time to Arrive to the Goal

We want to calculate the “time to arrive to the goal”,
for fixed policy π and initial state s

This time is a r.v. because there are many possible trajectories,
each with different probability

For trajectory τ = 〈X0, X1, . . .〉, let T (τ) = min{i : Xi ∈ G}
(i.e. the time of arrival to the goal)

If τ doesn’t contain a goal state, T (τ) =∞

The validity of π is expressed in symbols as:

• π is valid for s iff P πs (T =∞) = 0

• π is valid iff it is valid for all states

Optimal Solutions

Definition

Policy π is optimal for s if Jπ(s) ≤ Jπ′(s) for all policies π′

Definition

Policy π is (globally) optimal if it is optimal for all states

In probabilistic planning, we are interested in:

• Solutions for the initial state

• Optimal solutions for the initial state

Optimal Solutions

Definition

Policy π is optimal for s if Jπ(s) ≤ Jπ′(s) for all policies π′

Definition

Policy π is (globally) optimal if it is optimal for all states

In probabilistic planning, we are interested in:

• Solutions for the initial state

• Optimal solutions for the initial state

Computability Issues

The size of a controller π = 〈µ0, µ1, . . .〉 is in principle infinite
because the decision functions may vary with time

How do we store a controller?

How do we compute a controller?

A policy π = 〈µ0, µ1, . . .〉 is stationary if µ = µi for all i ≥ 0;
i.e. decision function doesn’t depend on time

• Such a policy is simply denoted by µ

• The size of µ is just |S| log |A| !!!

What can be captured by stationary policies?

Computability Issues

The size of a controller π = 〈µ0, µ1, . . .〉 is in principle infinite
because the decision functions may vary with time

How do we store a controller?

How do we compute a controller?

A policy π = 〈µ0, µ1, . . .〉 is stationary if µ = µi for all i ≥ 0;
i.e. decision function doesn’t depend on time

• Such a policy is simply denoted by µ

• The size of µ is just |S| log |A| !!!

What can be captured by stationary policies?

Computability Issues

The size of a controller π = 〈µ0, µ1, . . .〉 is in principle infinite
because the decision functions may vary with time

How do we store a controller?

How do we compute a controller?

A policy π = 〈µ0, µ1, . . .〉 is stationary if µ = µi for all i ≥ 0;
i.e. decision function doesn’t depend on time

• Such a policy is simply denoted by µ

• The size of µ is just |S| log |A| !!!

What can be captured by stationary policies?

Computability Issues

The size of a controller π = 〈µ0, µ1, . . .〉 is in principle infinite
because the decision functions may vary with time

How do we store a controller?

How do we compute a controller?

A policy π = 〈µ0, µ1, . . .〉 is stationary if µ = µi for all i ≥ 0;
i.e. decision function doesn’t depend on time

• Such a policy is simply denoted by µ

• The size of µ is just |S| log |A| !!!

What can be captured by stationary policies?

Recursion I: Cost of Stationary Policies

Under stationary µ, the chain is homogenuous in time
and satisfies the Markov property

Moreover, it is easy to show that Jµ satisfies the recursion:

Jµ(s) = c(s, µ(s)) +
∑
s′

p(s′|s, µ(s))Jµ(s′)

Recursion I: Cost of Stationary Policies

Under stationary µ, the chain is homogenuous in time
and satisfies the Markov property

Moreover, it is easy to show that Jµ satisfies the recursion:

Jµ(s) = c(s, µ(s)) +
∑
s′

p(s′|s, µ(s))Jµ(s′)

Example: Stationary Policy

Policy: π = 〈µ6, µ6, µ6, . . .〉

Equations:

Jµ6(s0) = 1 + Jµ6(s2)

Jµ6(s1) = 1 + 19
20Jµ6(s1) +

1
20Jµ6(s2)

Jµ6(s2) = 1 + 2
5Jµ6(s0) +

1
2Jµ6(s2)

Solution:

Jµ6(s0) = 15

Jµ6(s1) = 34

Jµ6(s2) = 14

Proper Policies

Important property of stationary policies (widely used in OR)

Definition

A stationary policy µ is proper if

ρµ = max
s∈S

Pµs (XN /∈ G) < 1

where N = |S| is the number of states

Properness is a global property because it depends on all the states

Basic Properties of Stationary Policies

Theorem

µ is valid for s iff Eµs T <∞

Theorem

µ is valid for s iff Jµ(s) <∞

Theorem

µ is valid iff µ is proper

Fundamental Operators

For stationary policy µ, define the operator Tµ, that maps vectors
into vectors, as

(TµJ)(s) = c(s, µ(s)) +
∑
s′

p(s′|s, µ(s))J(s′)

I.e., if J is a vector, then TJ is a vector

Likewise, define the operator T as

(TJ)(s) = min
a∈A(s)

c(s, a) +
∑
s′

p(s′|s, a)J(s′)

Assume all functions (vectors) satisfy J(s) = 0 for goals s

Fundamental Operators

For stationary policy µ, define the operator Tµ, that maps vectors
into vectors, as

(TµJ)(s) = c(s, µ(s)) +
∑
s′

p(s′|s, µ(s))J(s′)

I.e., if J is a vector, then TJ is a vector

Likewise, define the operator T as

(TJ)(s) = min
a∈A(s)

c(s, a) +
∑
s′

p(s′|s, a)J(s′)

Assume all functions (vectors) satisfy J(s) = 0 for goals s

Fixed Points

Operators Tµ and T are monotone and continuous

Therefore, both have a unique least fixed points (LFP)

Theorem

The LFP of Tµ is Jµ; i.e., Jµ = TµJµ

Recursion II: Bellman Equation

Let J∗ be the LFP of T ; i.e., J∗ = TJ∗

Bellman Equation

J∗(s) = min
a∈A(s)

c(s, a) +
∑
s′

p(s′|s, a)J∗(s′)

Theorem

J∗ ≤ Jπ for all π (stationary or not)

Greedy Policies

The greedy (stationary) policy µ for value function J is

µ(s) = argmin
a∈A(s)

c(s, a) +
∑

s′ p(s
′|s, a)J(s′)

Observe

(TµJ)(s) = c(s, µ(s)) +
∑

s′ p(s
′|s, µ(s))J(s′)

= min
a
c(s, a) +

∑
s′ p(s

′|s, a)J(s)

= (TJ)(s)

Thus, µ is greedy for J iff TµJ = TJ

Greedy Policies

The greedy (stationary) policy µ for value function J is

µ(s) = argmin
a∈A(s)

c(s, a) +
∑

s′ p(s
′|s, a)J(s′)

Observe

(TµJ)(s) = c(s, µ(s)) +
∑

s′ p(s
′|s, µ(s))J(s′)

= min
a
c(s, a) +

∑
s′ p(s

′|s, a)J(s)

= (TJ)(s)

Thus, µ is greedy for J iff TµJ = TJ

Optimal Greedy Policies

Let µ∗ be the greedy policy for J∗ ; i.e.,

µ∗(s) = min
a∈A(s)

c(s, a) +
∑

s′ p(s
′|s, a)J∗(s′)

Theorem (Main)

J∗ = Jµ∗ and thus µ∗ is an optimal solution

Most important implications:

• We can focus only on stationary policies without compromising
optimality

• We can focus on computing J∗ (the solution of Bellman Equation)
because the greedy policy wrt it is optimal

Optimal Greedy Policies

Let µ∗ be the greedy policy for J∗ ; i.e.,

µ∗(s) = min
a∈A(s)

c(s, a) +
∑

s′ p(s
′|s, a)J∗(s′)

Theorem (Main)

J∗ = Jµ∗ and thus µ∗ is an optimal solution

Most important implications:

• We can focus only on stationary policies without compromising
optimality

• We can focus on computing J∗ (the solution of Bellman Equation)
because the greedy policy wrt it is optimal

Optimal Greedy Policies

Let µ∗ be the greedy policy for J∗ ; i.e.,

µ∗(s) = min
a∈A(s)

c(s, a) +
∑

s′ p(s
′|s, a)J∗(s′)

Theorem (Main)

J∗ = Jµ∗ and thus µ∗ is an optimal solution

Most important implications:

• We can focus only on stationary policies without compromising
optimality

• We can focus on computing J∗ (the solution of Bellman Equation)
because the greedy policy wrt it is optimal

Convergence (Bases for Algorithms)

Theorem

If µ is a valid policy, then T kµJ → Jµ for all vectors J with ‖J‖ <∞

Theorem

If TµJ ≤ J for some J such that ‖J‖ <∞, then µ is a valid policy

Theorem (Basis for Value Iteration)

If there is a valid solution, then T kJ → J∗ for all J with ‖J‖ <∞

Convergence (Bases for Algorithms)

Theorem

If µ is a valid policy, then T kµJ → Jµ for all vectors J with ‖J‖ <∞

Theorem

If TµJ ≤ J for some J such that ‖J‖ <∞, then µ is a valid policy

Theorem (Basis for Value Iteration)

If there is a valid solution, then T kJ → J∗ for all J with ‖J‖ <∞

Convergence (Bases for Algorithms)

Theorem

If µ is a valid policy, then T kµJ → Jµ for all vectors J with ‖J‖ <∞

Theorem

If TµJ ≤ J for some J such that ‖J‖ <∞, then µ is a valid policy

Theorem (Basis for Value Iteration)

If there is a valid solution, then T kJ → J∗ for all J with ‖J‖ <∞

Convergence (Bases for Algorithms)

Let µ0 be a proper policy

Define the following stationary policies:

• µ1 greedy for Jµ0

• µ2 greedy for Jµ1

• . . .

• µk+1 greedy for Jµk

Theorem (Basis for Policy Iteration)

µk converges to an optimal policy in a finite number of iterates

Theorem

If there is a solution, the fully random policy is proper

Convergence (Bases for Algorithms)

Let µ0 be a proper policy

Define the following stationary policies:

• µ1 greedy for Jµ0

• µ2 greedy for Jµ1

• . . .

• µk+1 greedy for Jµk

Theorem (Basis for Policy Iteration)

µk converges to an optimal policy in a finite number of iterates

Theorem

If there is a solution, the fully random policy is proper

Convergence (Bases for Algorithms)

Let µ0 be a proper policy

Define the following stationary policies:

• µ1 greedy for Jµ0

• µ2 greedy for Jµ1

• . . .

• µk+1 greedy for Jµk

Theorem (Basis for Policy Iteration)

µk converges to an optimal policy in a finite number of iterates

Theorem

If there is a solution, the fully random policy is proper

Convergence (Bases for Algorithms)

Let µ0 be a proper policy

Define the following stationary policies:

• µ1 greedy for Jµ0

• µ2 greedy for Jµ1

• . . .

• µk+1 greedy for Jµk

Theorem (Basis for Policy Iteration)

µk converges to an optimal policy in a finite number of iterates

Theorem

If there is a solution, the fully random policy is proper

Convergence (Bases for Algorithms)

Let µ0 be a proper policy

Define the following stationary policies:

• µ1 greedy for Jµ0

• µ2 greedy for Jµ1

• . . .

• µk+1 greedy for Jµk

Theorem (Basis for Policy Iteration)

µk converges to an optimal policy in a finite number of iterates

Theorem

If there is a solution, the fully random policy is proper

Suboptimality of Policies

The suboptimality of policy π at state s is |Jπ(s)− J∗(s)|

The suboptimality of policy π is ‖Jπ − J∗‖ = maxs |Jπ(s)− J∗(s)|

Summary

• Solutions are functions that map states into actions

• Cost of solutions is expected cost over trajectories

• There is a stationary policy µ∗ that is optimal

• Global solutions vs. solutions for sinit

• Cost function Jµ is LFP of operator Tµ

• Jµ∗ satisfies the Bellman equation and is LFP of Bellman operator

Part II

Algorithms

Goals

• Basic Algorithms

I Value Iteration and Asynchronous Value Iteration

I Policy Iteration

I Linear Programming

• Heuristic Search Algorithms

I Real-Time Dynamic Programming

I LAO*

I Labeled Real-Time Dynamic Programming

I Others

Value Iteration (VI)

Computes a sequence of iterates Jk using the Bellman Equation
as assignment:

Jk+1(s) = min
a∈A(s)

c(s, a) +
∑
s′

p(s′|s, a)Jk(s′)

I.e., Jk+1 = TJk. The initial iterate is J0

The iteration stops when the residual ‖Jk+1 − Jk‖ < ε

• Enough to store two vectors: Jk (current) and Jk+1 (new)

• Gauss-Seidel: store one vector (performs updates in place)

Value Iteration (VI)

Theorem

If there is a solution, ‖Jk+1 − Jk‖ → 0 from every initial J0 with
‖J0‖ <∞

Corollary

If there is solution, VI terminates in finite time

Open Question

Upon termination at iterate k + 1 with residual < ε,
what is the suboptimality of the greedy policy µk for Jk?

Value Iteration (VI)

Theorem

If there is a solution, ‖Jk+1 − Jk‖ → 0 from every initial J0 with
‖J0‖ <∞

Corollary

If there is solution, VI terminates in finite time

Open Question

Upon termination at iterate k + 1 with residual < ε,
what is the suboptimality of the greedy policy µk for Jk?

Example: Value Iteration

J0 = (0.00, 0.00, 0.00)

J1 = (1.00, 1.00, 1.00)

J2 = (1.80, 2.00, 1.90)

J3 = (2.48, 2.84, 2.67)

. . .

J10 = (5.12, 6.10, 5.67)

. . .

J100 = (6.42, 7.69, 7.14)

. . .

J∗ = (6.42, 7.69, 7.14)

.05

1a0

a0a1

a1

a0

a1

.95
.4

.7

.3

.3
.1

.1

.2

.2

.4
.4

.4

.5

S1

S2

S0

S3

µ∗(s0) = argmin{1 + 2
5
J∗(s0) +

2
5
J∗(s2), 1 + J∗(s2)} = a0

µ∗(s1) = argmin{1 + 7
10
J∗(s0) +

1
10
J∗(s1) +

1
5
J∗(s2), 1 +

19
20
J∗(s1) +

1
20
J∗(s2)} = a0

µ∗(s2) = argmin{1 + 2
5
J∗(s1) +

1
2
J∗(s2), 1 +

3
10
J∗(s0) +

3
10
J∗(s1) +

2
5
J∗(s2)} = a0

Example: Value Iteration

J0 = (0.00, 0.00, 0.00)

J1 = (1.00, 1.00, 1.00)

J2 = (1.80, 2.00, 1.90)

J3 = (2.48, 2.84, 2.67)

. . .

J10 = (5.12, 6.10, 5.67)

. . .

J100 = (6.42, 7.69, 7.14)

. . .

J∗ = (6.42, 7.69, 7.14)

.05

1a0

a0a1

a1

a0

a1

.95
.4

.7

.3

.3
.1

.1

.2

.2

.4
.4

.4

.5

S1

S2

S0

S3

µ∗(s0) = argmin{1 + 2
5
J∗(s0) +

2
5
J∗(s2), 1 + J∗(s2)} = a0

µ∗(s1) = argmin{1 + 7
10
J∗(s0) +

1
10
J∗(s1) +

1
5
J∗(s2), 1 +

19
20
J∗(s1) +

1
20
J∗(s2)} = a0

µ∗(s2) = argmin{1 + 2
5
J∗(s1) +

1
2
J∗(s2), 1 +

3
10
J∗(s0) +

3
10
J∗(s1) +

2
5
J∗(s2)} = a0

Example: Value Iteration

J0 = (0.00, 0.00, 0.00)

J1 = (1.00, 1.00, 1.00)

J2 = (1.80, 2.00, 1.90)

J3 = (2.48, 2.84, 2.67)

. . .

J10 = (5.12, 6.10, 5.67)

. . .

J100 = (6.42, 7.69, 7.14)

. . .

J∗ = (6.42, 7.69, 7.14)

.05

1a0

a0a1

a1

a0

a1

.95
.4

.7

.3

.3
.1

.1

.2

.2

.4
.4

.4

.5

S1

S2

S0

S3

µ∗(s0) = argmin{1 + 2
5
J∗(s0) +

2
5
J∗(s2), 1 + J∗(s2)} = a0

µ∗(s1) = argmin{1 + 7
10
J∗(s0) +

1
10
J∗(s1) +

1
5
J∗(s2), 1 +

19
20
J∗(s1) +

1
20
J∗(s2)} = a0

µ∗(s2) = argmin{1 + 2
5
J∗(s1) +

1
2
J∗(s2), 1 +

3
10
J∗(s0) +

3
10
J∗(s1) +

2
5
J∗(s2)} = a0

Asynchronous Value Iteration

VI is sometimes called Parallel VI because it updates all
states at each iteration

However, this is not needed!

Let Sk be the set of states updated at iteration k; i.e.,

Jk+1(s) =

{
(TJk)(s) if s ∈ Sk
Jk(s) otherwise

Theorem

If there is solution and every state is updated infinitely often, then
Jk → J∗ as k →∞

Asynchronous Value Iteration

VI is sometimes called Parallel VI because it updates all
states at each iteration

However, this is not needed!

Let Sk be the set of states updated at iteration k; i.e.,

Jk+1(s) =

{
(TJk)(s) if s ∈ Sk
Jk(s) otherwise

Theorem

If there is solution and every state is updated infinitely often, then
Jk → J∗ as k →∞

Asynchronous Value Iteration

VI is sometimes called Parallel VI because it updates all
states at each iteration

However, this is not needed!

Let Sk be the set of states updated at iteration k; i.e.,

Jk+1(s) =

{
(TJk)(s) if s ∈ Sk
Jk(s) otherwise

Theorem

If there is solution and every state is updated infinitely often, then
Jk → J∗ as k →∞

Policy Iteration (PI)

Computes a sequence of policies starting from a proper policy µ0:

• µ1 is greedy for Jµ0
• µ2 is greedy for Jµ1
• µk+1 is greedy for Jµk
• Stop when Jµk+1

= Jµk (or µk+1 = µk)

Given vector Jµk , µk+1 is calculated with equation

µk+1(s) = argmina∈A(s) c(s, a) +
∑

s′ p(s
′|s, a)Jµk(s′)

Given (stationary and proper) policy µ, Jµ is the solution of the
linear system of equations (one equation per state) given by

J(s) = c(s, µ(s)) +
∑

s′ p(s
′|s, µ(s))J(s′) s ∈ S

To solve it, one can invert a matrix or use other numerical methods

Policy Iteration (PI)

Computes a sequence of policies starting from a proper policy µ0:

• µ1 is greedy for Jµ0
• µ2 is greedy for Jµ1
• µk+1 is greedy for Jµk
• Stop when Jµk+1

= Jµk (or µk+1 = µk)

Given vector Jµk , µk+1 is calculated with equation

µk+1(s) = argmina∈A(s) c(s, a) +
∑

s′ p(s
′|s, a)Jµk(s′)

Given (stationary and proper) policy µ, Jµ is the solution of the
linear system of equations (one equation per state) given by

J(s) = c(s, µ(s)) +
∑

s′ p(s
′|s, µ(s))J(s′) s ∈ S

To solve it, one can invert a matrix or use other numerical methods

Policy Iteration (PI)

Computes a sequence of policies starting from a proper policy µ0:

• µ1 is greedy for Jµ0
• µ2 is greedy for Jµ1
• µk+1 is greedy for Jµk
• Stop when Jµk+1

= Jµk (or µk+1 = µk)

Given vector Jµk , µk+1 is calculated with equation

µk+1(s) = argmina∈A(s) c(s, a) +
∑

s′ p(s
′|s, a)Jµk(s′)

Given (stationary and proper) policy µ, Jµ is the solution of the
linear system of equations (one equation per state) given by

J(s) = c(s, µ(s)) +
∑

s′ p(s
′|s, µ(s))J(s′) s ∈ S

To solve it, one can invert a matrix or use other numerical methods

Policy Iteration (PI)

If µ0 isn’t proper, Jµ0 is unbounded for at least one state:

• policy evaluation is not well-defined

• PI may loop forever

If µ0 is proper, then all policies µk are proper

Theorem

Given an initial proper policy, PI terminates in finite time with an
optimal policy

Theorem

Given an initial proper policy, the number of iterations of PI is
bounded by the number of stationary policies which is |A||S|

Policy Iteration (PI)

If µ0 isn’t proper, Jµ0 is unbounded for at least one state:

• policy evaluation is not well-defined

• PI may loop forever

If µ0 is proper, then all policies µk are proper

Theorem

Given an initial proper policy, PI terminates in finite time with an
optimal policy

Theorem

Given an initial proper policy, the number of iterations of PI is
bounded by the number of stationary policies which is |A||S|

Example: Policy Iteration

µ0 = (a1, a1, a0)

Jµ0 = (15.00, 34.00, 14.00)

µ1 = (a0, a0, a0)

Jµ1 = (6.42, 7.69, 7.14) (optimal)

If µ0 = (a1, a1, a1), the policy is improper and PI loops forever!

.05

1a0

a0a1

a1

a0

a1

.95
.4

.7

.3

.3
.1

.1

.2

.2

.4
.4

.4

.5

S1

S2

S0

S3

Example: Policy Iteration

µ0 = (a1, a1, a0)

Jµ0 = (15.00, 34.00, 14.00)

µ1 = (a0, a0, a0)

Jµ1 = (6.42, 7.69, 7.14) (optimal)

If µ0 = (a1, a1, a1), the policy is improper and PI loops forever!

.05

1a0

a0a1

a1

a0

a1

.95
.4

.7

.3

.3
.1

.1

.2

.2

.4
.4

.4

.5

S1

S2

S0

S3

Example: Policy Iteration

µ0 = (a1, a1, a0)

Jµ0 = (15.00, 34.00, 14.00)

µ1 = (a0, a0, a0)

Jµ1 = (6.42, 7.69, 7.14) (optimal)

If µ0 = (a1, a1, a1), the policy is improper and PI loops forever!

.05

1a0

a0a1

a1

a0

a1

.95
.4

.7

.3

.3
.1

.1

.2

.2

.4
.4

.4

.5

S1

S2

S0

S3

Modified Policy Iteration (MPI)

The computation of Jµk (policy evaluation) is the most
time-consuming step in PI

Modified Policy Iteration differs from PI in two aspects:

1) Policy evaluation is done iteratively by computing a sequence
J0
µk
, J1
µk
, J2
µk
, . . . of value function with

J0
µk

= 0

Jm+1
µk

= TµkJ
m
µk

This is the inner loop, stopped when ‖Jm+1
µk

− Jmµk‖ < δ

Modified Policy Iteration (MPI)

2) The outer loop, that computes the policies µ0, µ1, µ2, . . .,
is stopped when ‖Jmk+1

µk+1 − Jmkµk
‖ < ε

That is, MPI performs approximated policy evaluation
and limited policy improvement

For problems with discount (not covered in these lectures),
there are suboptimality guarantees as function of ε and δ

Linear Programming (LP)

The optimal value function J∗ can be computed as the solution
of a linear program with non-negative variables, one variable xs
per state s, and |S| × |A| constraints

Linear Program

Maximize
∑
s

xs

Subject to

c(s, a) +
∑
s

p(s′|s, a)xs′ ≥ xs s ∈ S, a ∈ A(s)

xs ≥ 0 s ∈ S

Linear Programming (LP)

Theorem

If there is solution, the LP has bounded solution {xs}s∈S and
J∗(s) = xs for all s ∈ S

In practice, VI is faster than PI, MPI and LP

Linear Programming (LP)

Theorem

If there is solution, the LP has bounded solution {xs}s∈S and
J∗(s) = xs for all s ∈ S

In practice, VI is faster than PI, MPI and LP

Discussion

Complete methods, as the above, compute entire solutions (policies)
that work for all states

In probabilistic planning, we are only interested in solutions for the
initial state

Worse, the problem may have a solution for sinit and not have
entire solution (e.g., when there are avoidable dead-end states).
In such cases, the previous methods do not work

Search-based methods are designed to compute partial solutions
that work for the initial state

Partial Solutions

A partial (stationary) policy is a partial function µ : S → A

Executing µ from state s, generates trajectories τ = 〈s0, s1, . . .〉,
but now µ must be defined on all si. If not, the trajectory gets
‘truncated’ at the first state at which µ is undefined

The states reachable by µ from s is the set Rµ(s) of states appearing
in the trajectories of µ from s

We say that:

• µ is closed on state s ff µ is defined on all states in Rµ(s)

• µ is closed if it is closed on every state on which it is defined

The next algorithms compute partial policies closed on the
initial state

Partial Solutions

A partial (stationary) policy is a partial function µ : S → A

Executing µ from state s, generates trajectories τ = 〈s0, s1, . . .〉,
but now µ must be defined on all si. If not, the trajectory gets
‘truncated’ at the first state at which µ is undefined

The states reachable by µ from s is the set Rµ(s) of states appearing
in the trajectories of µ from s

We say that:

• µ is closed on state s ff µ is defined on all states in Rµ(s)

• µ is closed if it is closed on every state on which it is defined

The next algorithms compute partial policies closed on the
initial state

Partial Solutions

A partial (stationary) policy is a partial function µ : S → A

Executing µ from state s, generates trajectories τ = 〈s0, s1, . . .〉,
but now µ must be defined on all si. If not, the trajectory gets
‘truncated’ at the first state at which µ is undefined

The states reachable by µ from s is the set Rµ(s) of states appearing
in the trajectories of µ from s

We say that:

• µ is closed on state s ff µ is defined on all states in Rµ(s)

• µ is closed if it is closed on every state on which it is defined

The next algorithms compute partial policies closed on the
initial state

Goals

• Basic Algorithms

I Value Iteration and Asynchronous Value Iteration

I Policy Iteration

I Linear Programming

• Heuristic Search Algorithms

I Real-Time Dynamic Programming

I LAO*

I Labeled Real-Time Dynamic Programming

I Others

Classical Planning: Algorithms

Classical planning is a path-finding problem over a huge graph

Many algorithms available, among others:

• Blind search: DFS, BFS, DFID, . . .

• Heuristic search: A*, IDA*, WA*, . . .

• Greedy: greedy best-first search, Enforced HC, local search, . . .

• On-line search: LRTA* and variants

Classical Planning: Best-First Search (DD and RO)

open := ∅ [priority queue w/ nodes 〈s, g, h〉 ordered by g + h]

closed := ∅ [collection of closed nodes]

push(〈sinit, 0, h(sinit)〉, open)

while open 6= ∅ do

〈s, g, h〉 := pop(open)

if s /∈ closed or g < dist[s] then

closed := closed ∪ {s}

dist[s] := g

if s is goal then return (s, g)

foreach a ∈ A(s) do

s′ := f(s, a)

if h(s′) <∞ then

push(〈s′, d+ cost(s, a), h(s′)〉, open)

(From lectures of B. Nebel, R. Mattmüller and T. Keller)

Classical Planning: Learning Real-Time A* (LRTA*)

Let H be empty hash table with entries H(s) initialized to h(s) as needed

repeat

Set s := sinit

while s isn’t goal do

foreach action a ∈ A(s) do

Let s′ := f(s, a)

Set Q(s, a) := c(s, a) +H(s′)

Select best action a := argmina∈A(s)Q(s, a)

Update value H(s) := Q(s,a)

Set s := f(s,a)

end while

until some termination condition

Learning Real-Time A* (LRTA*)

• On-line algorithm that interleaves planning/execution

• Performs multiple trials

• Best action chosen greedily by one-step lookahead using values
stored in hash table

• Can’t get trapped into loops because values are continuously
updated

• Converges to optimal path under certain conditions

• Uses heuristic function h, the better the heuristic the faster the
convergence

• Can be converted into offline algorithm

Real-Time Dynamic Programming (RTDP)

Let H be empty hash table with entries H(s) initialized to h(s) as needed

repeat

Set s := sinit

while s isn’t goal do

foreach action a ∈ A(s) do

Set Q(s, a) := c(s, a) +
∑

s′∈S p(s
′|s, a)H(s′)

Select best action a := argmina∈A(s)Q(s, a)

Update value H(s) := Q(s,a)

Sample next state s′ with probability p(s′|s,a) and set s := s′

end while

until some termination condition

Real-Time Dynamic Programming (RTDP)

• On-line algorithm that interleaves planning/execution

• Performs multiple trials

• Best action chosen greedily by one-step lookahead using value
function stored in hash table

• Can’t get trapped into loops because values are continuously
updated

• Converges to optimal policy under certain conditions

• Uses heuristic function h, the better the heuristic the faster the
convergence

• Can be converted into offline algorithm

• Generalizes Learning Real-Time A*

Properties of Heuristics

Heuristic h : S → R+ is admissible if h ≤ J∗

Heuristic h : S → R+ is consistent if h ≤ Th

Lemma

If h is consistent, h is admissible

Lemma

Let h be consistent (resp. admissible) and h′ = h except at s′ where

h′(s′) = (Th)(s′)

Then, h′ is consistent (resp. admissible)

The constant-zero heuristic is admissible and consistent

Properties of Heuristics

Heuristic h : S → R+ is admissible if h ≤ J∗

Heuristic h : S → R+ is consistent if h ≤ Th

Lemma

If h is consistent, h is admissible

Lemma

Let h be consistent (resp. admissible) and h′ = h except at s′ where

h′(s′) = (Th)(s′)

Then, h′ is consistent (resp. admissible)

The constant-zero heuristic is admissible and consistent

Convergence of RTDP

Theorem

If there is a solution for the reachable states from sinit, then RTDP
converges to a (partial) value function.

The (partial) policy greedy with respect to this value function is a
valid solution for the initial state.

Theorem

If, in addition, the heuristic is admissible, then RTDP converges to a
value function whose value on the relevant states coincides with J∗.

Hence, the partial policy greedy with respect to this value function is
an optimal solution for the initial state.

Convergence of RTDP

Theorem

If there is a solution for the reachable states from sinit, then RTDP
converges to a (partial) value function.

The (partial) policy greedy with respect to this value function is a
valid solution for the initial state.

Theorem

If, in addition, the heuristic is admissible, then RTDP converges to a
value function whose value on the relevant states coincides with J∗.

Hence, the partial policy greedy with respect to this value function is
an optimal solution for the initial state.

AND/OR Graphs

An AND/OR graph is a rooted digraph made of AND nodes
and OR nodes:

• an OR node models the choice of an action at the state
represented by the node

• an AND node models the (multiple) outcomes of the action
represented by the node

If deterministic actions, the AND/OR graph is a digraph

Example: AND/OR Graph

.05

1a0

a0a1

a1

a0

a1

.95
.4

.7

.3

.3
.1

.1

.2

.2

.4
.4

.4

.5

S1

S2

S0

S3

Solutions for AND/OR Graphs

A solution for an AND/OR graph is a subgraph that satisfies:

• the root node, that represents the initial state, belongs to the
solution

• for every internal OR node in the solution, exactly one of its
children belongs to the solution

• for every AND node in the solution, all of its children belong to the
solution

The solution is complete if every maximal directed path ends in a
terminal (goal) node

Otherwise, the solution is partial

Solutions for AND/OR Graphs

A solution for an AND/OR graph is a subgraph that satisfies:

• the root node, that represents the initial state, belongs to the
solution

• for every internal OR node in the solution, exactly one of its
children belongs to the solution

• for every AND node in the solution, all of its children belong to the
solution

The solution is complete if every maximal directed path ends in a
terminal (goal) node

Otherwise, the solution is partial

Example: Solution for AND/OR Graph

.4
.5

.1 .05

.4
.95

a0

a1

a1

a0

.4

.2

.1

a0

.7

.2

.4

a1

.3

.3

1

S2

S1

S0

S3

Best-First Search for AND/OR Graphs (AO*)

Best First: iteratively, expand nodes on the fringe of best partial
solution until it becomes complete

Optimal because cost of best partial solution is lower bound of any
complete solution (if heuristic is admissible)

Best partial solution determined greedily by choosing, for each OR
node, the action with best (expected) value

AO* solves the DP recursion in acyclic spaces by:

• Expansion: expands one or more nodes on the fringe
of best partial solution

• Cost Revision: propagates the new values on the fringe upwards to
the root using backward induction

Best-First Search for AND/OR Graphs (AO*)

Best First: iteratively, expand nodes on the fringe of best partial
solution until it becomes complete

Optimal because cost of best partial solution is lower bound of any
complete solution (if heuristic is admissible)

Best partial solution determined greedily by choosing, for each OR
node, the action with best (expected) value

AO* solves the DP recursion in acyclic spaces by:

• Expansion: expands one or more nodes on the fringe
of best partial solution

• Cost Revision: propagates the new values on the fringe upwards to
the root using backward induction

LAO*

LAO* generalizes AO* for AND/OR graphs with cycles

Maintains the expansion step of AO* but changes the cost-revision
step from backward induction to policy evaluation of the partial
solution

Improved LAO* (ILAO*):

• expands all open nodes on the fringe of current solution

• performs just one backup for each node in current solution

As a result, current partial solution is not guaranteed to be a best
partial solution

Hence, stopping criteria is strengthened to ensure optimality

LAO*

LAO* generalizes AO* for AND/OR graphs with cycles

Maintains the expansion step of AO* but changes the cost-revision
step from backward induction to policy evaluation of the partial
solution

Improved LAO* (ILAO*):

• expands all open nodes on the fringe of current solution

• performs just one backup for each node in current solution

As a result, current partial solution is not guaranteed to be a best
partial solution

Hence, stopping criteria is strengthened to ensure optimality

LAO*

LAO* generalizes AO* for AND/OR graphs with cycles

Maintains the expansion step of AO* but changes the cost-revision
step from backward induction to policy evaluation of the partial
solution

Improved LAO* (ILAO*):

• expands all open nodes on the fringe of current solution

• performs just one backup for each node in current solution

As a result, current partial solution is not guaranteed to be a best
partial solution

Hence, stopping criteria is strengthened to ensure optimality

LAO*

LAO* generalizes AO* for AND/OR graphs with cycles

Maintains the expansion step of AO* but changes the cost-revision
step from backward induction to policy evaluation of the partial
solution

Improved LAO* (ILAO*):

• expands all open nodes on the fringe of current solution

• performs just one backup for each node in current solution

As a result, current partial solution is not guaranteed to be a best
partial solution

Hence, stopping criteria is strengthened to ensure optimality

Improved LAO*

Explicit graph initially consists of the start state sinit

repeat

Depth-first traversal of states in current best (partial) solution graph

foreach visited state s in postorder traversal do

if state s isn’t expanded then

Expand s by generating each successor s′ and initializing H(s′) to h(s′)

end if

Set H(s) := mina∈A(s) c(s, a) +
∑

s′∈S p(s
′|s, a)H(s′) and mark best action

end foreach

until best solution graph has no unexpanded tips and residual < ε

Improved LAO*

The expansion and cost-revision steps of ILAO* performed in the
same depth-first traversal of the partial solution graph

Stopping criteria extended with a test on residual

Theorem

If there is solution for sinit and h is consistent, LAO* and ILAO*
terminate with solution for sinit and residual < ε

Improved LAO*

The expansion and cost-revision steps of ILAO* performed in the
same depth-first traversal of the partial solution graph

Stopping criteria extended with a test on residual

Theorem

If there is solution for sinit and h is consistent, LAO* and ILAO*
terminate with solution for sinit and residual < ε

Faster Convergence

ILAO* converges much faster than RTDP because

• performs systematic exploration of the state space
rather than stochastic exploration

• has an explicit convergence test

Both ideas can be incorporated into RTDP

Labeling States

RTDP keeps visiting reachable states even when the value function
has converged over them (aka solved states)

Updates on solved states are wasteful because the value function
doesn’t change

Hence, it makes sense to detect solved states and not perform
updates on them

Solved States

A state s is solved for J when s and all states reachable
from s using the greedy policy for J have residual < ε

If the solution graph contains cycles, labeling states as
‘solved’ cannot be done by backward induction

However, the solution graph can be decomposed into strongly-
connected components (SCCs) that make up an acyclic graph
that can be labeled

Example: Strongly-Connected Components (SCCs)

0

2

5 6 7

31

4C1

C2 C3

C4

C2

C4

C1

C3

Example: Strongly-Connected Components (SCCs)

0

2

5 6 7

31

4C1

C2 C3

C4

C2

C4

C1

C3

Detecting Solved States

A depth-first traversal from s that chooses actions greedily with
respect to J can be used to test if s is solved:

• backtrack at solved states returning true

• backtrack at states with residual ≥ ε returning false

If updates are performed at states with residual ≥ ε and their
ancestors, the traversal either

• detects a solved state, or

• performs at least one update that changes the value
of some state in more than ε

This algorithm is called CheckSolved

Detecting Solved States

A depth-first traversal from s that chooses actions greedily with
respect to J can be used to test if s is solved:

• backtrack at solved states returning true

• backtrack at states with residual ≥ ε returning false

If updates are performed at states with residual ≥ ε and their
ancestors, the traversal either

• detects a solved state, or

• performs at least one update that changes the value
of some state in more than ε

This algorithm is called CheckSolved

Detecting Solved States

A depth-first traversal from s that chooses actions greedily with
respect to J can be used to test if s is solved:

• backtrack at solved states returning true

• backtrack at states with residual ≥ ε returning false

If updates are performed at states with residual ≥ ε and their
ancestors, the traversal either

• detects a solved state, or

• performs at least one update that changes the value
of some state in more than ε

This algorithm is called CheckSolved

CheckSolved

Let rv := true; open := ∅; closed := ∅
if not labeled s then push(s, open)

while open 6= ∅ do
s := pop(open); push(s, closed)
if residual(s) > ε then rv := false; continue

a := best-action(s)
foreach s′ with P (s′|s, a) > 0 do

if not labeled s′ and s′ /∈ open ∪ closed then
push(s, open)

endwhile

if rv = true then
foreach s′ ∈ closed do label s

else
while closed 6= ∅ do

s := pop(closed)
dp-update(s)

return rv

Labeled RTDP (LRTDP)

RTDP in which the goal states are initially marked as solved and the
trials are modified to:

• terminate at solved states rather than goal states

• at termination, call CheckSolved on all states in the trial
(in reverse order) until it returns false

• terminate trials when the initial state is labeled as solved

Labeled RTDP (LRTDP)

LRTDP achieves the following:

• crisp termination condition

• final function has residual < ε on states reachable from sinit

• doesn’t perform updates over converged states

• the search is still stochastic but it is “more systematic”

Theorem

If there is solution for all reachable states from sinit, and h is
consistent, LRTDP terminates with an optimal solution for sinit in a
number of trials bounded by ε−1

∑
s J
∗(s)− h(s)

Labeled RTDP (LRTDP)

LRTDP achieves the following:

• crisp termination condition

• final function has residual < ε on states reachable from sinit

• doesn’t perform updates over converged states

• the search is still stochastic but it is “more systematic”

Theorem

If there is solution for all reachable states from sinit, and h is
consistent, LRTDP terminates with an optimal solution for sinit in a
number of trials bounded by ε−1

∑
s J
∗(s)− h(s)

Using Non-Admissible Heuristics

LAO* and LRTDP can be used with non-admissible heuristics,
yet one looses the guarantees on optimality

Theorem

If there is a solution for sini and h is non-admissible, then LAO*
(and improved LAO*) terminates with a solution for the initial state

Theorem

If there is a solution for the reachable states from sinit and h is non-
admissible, then RTDP terminates with a solution for the initial state

Heuristic Dynamic Programming (HDP)

Tarjan’s algorithm for computing SCCs is a depth-first traversal
that computes the SCCs and their acyclic structure

It can be modified to:

• backtrack on solved states

• expand (and update the value) of non-goal tip nodes

• update the value of states with residual ≥ ε
• update the value of ancestors of updated nodes

• when detecting an SCC of nodes with residual < ε, label all nodes
in the SCC as solved

(Modified) Tarjan’s algorithm can be used to find optimal solutions:

while sinit isn’t solved do TarjanSCC(sinit)

General Template: Find-and-Revise

Start with a consistent function J := h

repeat
Find a state s in the greedy graph for J with residual(s) > ε
Revise J at s

until no such state s is found

return J

• J remains consistent (lower bound) after revisions (updates)

• number of iterations until convergence bounded as in RTDP; i.e.,
by ε−1

∑
s J
∗(s)− h(s)

General Template: Find-and-Revise

Start with a consistent function J := h

repeat
Find a state s in the greedy graph for J with residual(s) > ε
Revise J at s

until no such state s is found

return J

• J remains consistent (lower bound) after revisions (updates)

• number of iterations until convergence bounded as in RTDP; i.e.,
by ε−1

∑
s J
∗(s)− h(s)

Other Algorithms

Bounds: admissible heuristics are LBs. With UBs, one can:

• use difference of bounds to bound suboptimality

• use difference of bounds to focus the search

Algorithms that use both bounds are BRTDP, FRTDP, . . .

AND/OR Graphs: used to model a variety of problems.
LDFS is a unified algorithm for AND/OR graphs that is based of
depth-first search and DP updates

Symbolic Search: many variants of above algorithms as well as
others that implement search in symbolic representations and
factored MDPs

Summary

• Explicit algorithms such as VI and PI work well for small problems

• Explicit algorithms compute (entire) solutions

• LAO* and LRTDP compute solutions for the initial state:

I if heuristic is admissible, both compute optimal solutions

I if heuristic is non-admissible, both compute solutions

I number of updates depends on quality of heuristic

• There are other search algorithms

Part III

Heuristics (few thoughts)

Recap: Properties of Heuristics

Heuristic h : S → R+ is admissible if h ≤ J∗

Heuristic h : S → R+ is consistent if h ≤ Th

Lemma

If h is consistent, h is admissible

Search-based algorithms compute:

• Optimal solution for initial state if heuristic is admissible

• Solution for initial state for any heuristic

How to Obtain Admissible Heuristics?

Relax problem → Solve optimally → Admissible heuristic

How to relax?

• Remove non-determinism

• State abstraction (?)

How to solve relaxation?

• Use available solver

• Use search with admissible heuristic

• Substitute with admissible heuristic for relaxation

How to Obtain Admissible Heuristics?

Relax problem → Solve optimally → Admissible heuristic

How to relax?

• Remove non-determinism

• State abstraction (?)

How to solve relaxation?

• Use available solver

• Use search with admissible heuristic

• Substitute with admissible heuristic for relaxation

How to Obtain Admissible Heuristics?

Relax problem → Solve optimally → Admissible heuristic

How to relax?

• Remove non-determinism

• State abstraction (?)

How to solve relaxation?

• Use available solver

• Use search with admissible heuristic

• Substitute with admissible heuristic for relaxation

Determinization: Min-Min Heuristic

Determinization obtained by transforming Bellman equation

J∗(s) = min
a∈A(s)

c(s, a) +
∑
s′∈s

p(s′|s, a)J∗(s′)

into

J∗min(s) = min
a∈A(s)

c(s, a) + min{J∗min(s′) : p(s′|s, a) > 0}

Obs: This is Bellman equation for deterministic problem

Theorem

J∗min(s) is consistent and thus J∗min(s) ≤ J∗(s)

Solve with search algorithm, or use admissible estimate for J∗min

Determinization: Min-Min Heuristic

Determinization obtained by transforming Bellman equation

J∗(s) = min
a∈A(s)

c(s, a) +
∑
s′∈s

p(s′|s, a)J∗(s′)

into

J∗min(s) = min
a∈A(s)

c(s, a) + min{J∗min(s′) : p(s′|s, a) > 0}

Obs: This is Bellman equation for deterministic problem

Theorem

J∗min(s) is consistent and thus J∗min(s) ≤ J∗(s)

Solve with search algorithm, or use admissible estimate for J∗min

Determinization: Min-Min Heuristic

Determinization obtained by transforming Bellman equation

J∗(s) = min
a∈A(s)

c(s, a) +
∑
s′∈s

p(s′|s, a)J∗(s′)

into

J∗min(s) = min
a∈A(s)

c(s, a) + min{J∗min(s′) : p(s′|s, a) > 0}

Obs: This is Bellman equation for deterministic problem

Theorem

J∗min(s) is consistent and thus J∗min(s) ≤ J∗(s)

Solve with search algorithm, or use admissible estimate for J∗min

Abstractions

Abstraction of problem P with space S is problem P ′ with space S′

together with abstraction function α : S → S′

Interested in “small” abstractions; i.e., |S′| � |S|

Abstraction is admissible if J∗P ′(α(s)) ≤ J∗P (s)

Abstraction is bounded if J∗P ′(α(s)) =∞ =⇒ J∗P (s) =∞

how to compute admissible abstractions?

how to compute bounded abstractions?

Abstractions

Abstraction of problem P with space S is problem P ′ with space S′

together with abstraction function α : S → S′

Interested in “small” abstractions; i.e., |S′| � |S|

Abstraction is admissible if J∗P ′(α(s)) ≤ J∗P (s)

Abstraction is bounded if J∗P ′(α(s)) =∞ =⇒ J∗P (s) =∞

how to compute admissible abstractions?

how to compute bounded abstractions?

Abstractions

Abstraction of problem P with space S is problem P ′ with space S′

together with abstraction function α : S → S′

Interested in “small” abstractions; i.e., |S′| � |S|

Abstraction is admissible if J∗P ′(α(s)) ≤ J∗P (s)

Abstraction is bounded if J∗P ′(α(s)) =∞ =⇒ J∗P (s) =∞

how to compute admissible abstractions?

how to compute bounded abstractions?

Summary

• Not much known about heuristics for probabilistic planning

• There are (search) algorithms but cannot be exploited

• Heuristics to be effective must be computed at representation
level, like done in classical planning

• Heuristics for classical planning can be lifted for probabilistic
planning through determinization

Lots of things to be done about heuristics!

Summary

• Not much known about heuristics for probabilistic planning

• There are (search) algorithms but cannot be exploited

• Heuristics to be effective must be computed at representation
level, like done in classical planning

• Heuristics for classical planning can be lifted for probabilistic
planning through determinization

Lots of things to be done about heuristics!

Part IV

Monte-Carlo Planning

Goals

• Monte-Carlo Planning

• Uniform Monte-Carlo

• Adaptive Monte-Carlo

(based on ICAPS’10 tutorial on Monte-Carlo Planning by A. Fern)

Motivation

• Often, not interested in computing an explicit policy; it is enough
to have a method for action selection

• May have no good heuristic to prune irrelevant parts of the space

• State space can be prohibitively large, even store a policy or value
function over the relevant states

• May have no explicit model, but just simulator

• May have (somewhat) good base policy for the problem instead of
a heuristic

Anyone of these may render complete algorithms useless!

Simulators and Action Selection Mechanisms

Definition (Simulator)

A simulator is a computer program that given a state and action,
generates a successor state and reward distributed according to the
problem dynamics and rewards (known or unknown)

Definition (Action Selection Mechanism)

An action-selection mechanism is a computer program that given a
state, returns an action that is applicable at the state; i.e., it is a
policy represented implicitly

Monte-Carlo Planning

Given state and time window for making a decision, interact
with a simulator (for given time) and then choose an action

Monte-Carlo planning is often described in problems with rewards
instead of costs; both views are valid and interchangeable

Monte-Carlo planning is described in problems with discount,
but it is also used in undiscounted problems

Single-State Monte-Carlo Planning

Problem:

• single state s and k actions a1, . . . , ak
• rewards r(s, ai) ∈ [0, 1] are unknown and stochastic

• simulator samples rewards according to their hidden distributions

Objective:

• maximize profit in a given time window

• must explore and exploit!

This problem is called the Multi-Armed Bandit Problem (MABP)

a2a1 ak

Single-State Monte-Carlo Planning

Problem:

• single state s and k actions a1, . . . , ak
• rewards r(s, ai) ∈ [0, 1] are unknown and stochastic

• simulator samples rewards according to their hidden distributions

Objective:

• maximize profit in a given time window

• must explore and exploit!

This problem is called the Multi-Armed Bandit Problem (MABP)

a2a1 ak

Uniform Bandit Algorithm

• Pull arms uniformly (each, the same number w of times)

• Then, for each bandit i, get sampled rewards r̂i1, r̂i2, . . . , r̂iw

• Select arm ai with best average reward 1
w

∑w
j=1 r̂ij

Theorem (PAC Result)

If w ≥
(
Rmax
ε

)2
ln k

δ for all arms simultaneously, then∣∣∣∣E[R(s, ai)]−
1

w

w∑
j=1

r̂ij

∣∣∣∣ ≤ ε
with probability at least 1− δ

• ε-accuracy with probability at least 1− δ
• # calls to simulator = O(k

ε2
ln k

δ)

Uniform Bandit Algorithm

• Pull arms uniformly (each, the same number w of times)

• Then, for each bandit i, get sampled rewards r̂i1, r̂i2, . . . , r̂iw

• Select arm ai with best average reward 1
w

∑w
j=1 r̂ij

Theorem (PAC Result)

If w ≥
(
Rmax
ε

)2
ln k

δ for all arms simultaneously, then∣∣∣∣E[R(s, ai)]−
1

w

w∑
j=1

r̂ij

∣∣∣∣ ≤ ε
with probability at least 1− δ

• ε-accuracy with probability at least 1− δ
• # calls to simulator = O(k

ε2
ln k

δ)

Finite-Horizon MDPs

The process goes for h stages (decisions) only

The value functions are Jµ(s, i) for policy µ and J∗(s, i) for optimal
value function, 0 ≤ i ≤ h:

Jµ(s, 0) = 0 (process is terminated)

Jµ(s, i) = r(s, µ(s, i)) +
∑
s′

p(s′|s, µ(s))Jµ(s′, i− 1)

J∗(s, 0) = 0 (process is terminated)

J∗(s, i) = max
a∈A(s)

r(s, a) +
∑
s′

p(s′|s, a)J∗(s′, i− 1)

Greedy policy µ for vector J , 1 ≤ i ≤ h:

µ(s, i) = argmax
a∈A(s)

r(s, a) +
∑
s′

p(s′|s, a)J(s′, i− 1)

Finite-Horizon MDPs

The process goes for h stages (decisions) only

The value functions are Jµ(s, i) for policy µ and J∗(s, i) for optimal
value function, 0 ≤ i ≤ h:

Jµ(s, 0) = 0 (process is terminated)

Jµ(s, i) = r(s, µ(s, i)) +
∑
s′

p(s′|s, µ(s))Jµ(s′, i− 1)

J∗(s, 0) = 0 (process is terminated)

J∗(s, i) = max
a∈A(s)

r(s, a) +
∑
s′

p(s′|s, a)J∗(s′, i− 1)

Greedy policy µ for vector J , 1 ≤ i ≤ h:

µ(s, i) = argmax
a∈A(s)

r(s, a) +
∑
s′

p(s′|s, a)J(s′, i− 1)

Finite-Horizon MDPs

The process goes for h stages (decisions) only

The value functions are Jµ(s, i) for policy µ and J∗(s, i) for optimal
value function, 0 ≤ i ≤ h:

Jµ(s, 0) = 0 (process is terminated)

Jµ(s, i) = r(s, µ(s, i)) +
∑
s′

p(s′|s, µ(s))Jµ(s′, i− 1)

J∗(s, 0) = 0 (process is terminated)

J∗(s, i) = max
a∈A(s)

r(s, a) +
∑
s′

p(s′|s, a)J∗(s′, i− 1)

Greedy policy µ for vector J , 1 ≤ i ≤ h:

µ(s, i) = argmax
a∈A(s)

r(s, a) +
∑
s′

p(s′|s, a)J(s′, i− 1)

Estimating Quality of Base Policies by Sampling

For (implicit) base policy µ, we can estimate its quality by sampling

A simulated rollout of µ starting at s is obtained by:

let j = 0 and s0 = s

while j < h do

select action aj at sj using µ; i.e., aj = µ(sj , h− j)
use simulator to sample reward r̂j and state s′

set sj+1 := s′ and increase j

end while

• Jµ(s, h) can be estimated as
∑h−1

j=0 r̂j

• Can repeat w times to get better estimate: 1
w

∑w
i=1

∑h−1
j=0 r̂ij

• Accuracy bounds (PAC) can be obtained as function of ε, δ, |A|, w

Estimating Quality of Base Policies by Sampling

For (implicit) base policy µ, we can estimate its quality by sampling

A simulated rollout of µ starting at s is obtained by:

let j = 0 and s0 = s

while j < h do

select action aj at sj using µ; i.e., aj = µ(sj , h− j)
use simulator to sample reward r̂j and state s′

set sj+1 := s′ and increase j

end while

• Jµ(s, h) can be estimated as
∑h−1

j=0 r̂j

• Can repeat w times to get better estimate: 1
w

∑w
i=1

∑h−1
j=0 r̂ij

• Accuracy bounds (PAC) can be obtained as function of ε, δ, |A|, w

Estimating Quality of Base Policies by Sampling

For (implicit) base policy µ, we can estimate its quality by sampling

A simulated rollout of µ starting at s is obtained by:

let j = 0 and s0 = s

while j < h do

select action aj at sj using µ; i.e., aj = µ(sj , h− j)
use simulator to sample reward r̂j and state s′

set sj+1 := s′ and increase j

end while

• Jµ(s, h) can be estimated as
∑h−1

j=0 r̂j

• Can repeat w times to get better estimate: 1
w

∑w
i=1

∑h−1
j=0 r̂ij

• Accuracy bounds (PAC) can be obtained as function of ε, δ, |A|, w

Estimating Quality of Base Policies by Sampling

For (implicit) base policy µ, we can estimate its quality by sampling

A simulated rollout of µ starting at s is obtained by:

let j = 0 and s0 = s

while j < h do

select action aj at sj using µ; i.e., aj = µ(sj , h− j)
use simulator to sample reward r̂j and state s′

set sj+1 := s′ and increase j

end while

• Jµ(s, h) can be estimated as
∑h−1

j=0 r̂j

• Can repeat w times to get better estimate: 1
w

∑w
i=1

∑h−1
j=0 r̂ij

• Accuracy bounds (PAC) can be obtained as function of ε, δ, |A|, w

Estimating Quality of Base Policies by Sampling

For (implicit) base policy µ, we can estimate its quality by sampling

A simulated rollout of µ starting at s is obtained by:

let j = 0 and s0 = s

while j < h do

select action aj at sj using µ; i.e., aj = µ(sj , h− j)
use simulator to sample reward r̂j and state s′

set sj+1 := s′ and increase j

end while

• Jµ(s, h) can be estimated as
∑h−1

j=0 r̂j

• Can repeat w times to get better estimate: 1
w

∑w
i=1

∑h−1
j=0 r̂ij

• Accuracy bounds (PAC) can be obtained as function of ε, δ, |A|, w

Action Selection as a Multi-Armed Bandit Problem

The problem of selecting best action at state s and then following
base policy µ for h steps (in general MDPs) is similar to MABP:

• each action leads to a state from which the policy µ is executed

• the expected reward of taking action a at state s is

Qµ(s, a, h) = r(s, a) +
∑

s′ p(s
′|s, a)Jµ(s′, h− 1)

• it can be estimated with function SimQ(s, a, µ, h)

SimQ(s, a, µ, h)

sample (r̂, s′) that result of executing a at s

set q̂ := r̂

for i = 1 to h− 1 do

sample (r̂, s′′) that result of executing µ(s′, h− i) at s′

set q̂ := q̂ + r and s′ := s′′

end for

return q̂

Action Selection as a Multi-Armed Bandit Problem

The problem of selecting best action at state s and then following
base policy µ for h steps (in general MDPs) is similar to MABP:

• each action leads to a state from which the policy µ is executed

• the expected reward of taking action a at state s is

Qµ(s, a, h) = r(s, a) +
∑

s′ p(s
′|s, a)Jµ(s′, h− 1)

• it can be estimated with function SimQ(s, a, µ, h)

SimQ(s, a, µ, h)

sample (r̂, s′) that result of executing a at s

set q̂ := r̂

for i = 1 to h− 1 do

sample (r̂, s′′) that result of executing µ(s′, h− i) at s′

set q̂ := q̂ + r and s′ := s′′

end for

return q̂

Action Selection as a Multi-Armed Bandit Problem

The problem of selecting best action at state s and then following
base policy µ for h steps (in general MDPs) is similar to MABP:

• each action leads to a state from which the policy µ is executed

• the expected reward of taking action a at state s is

Qµ(s, a, h) = r(s, a) +
∑

s′ p(s
′|s, a)Jµ(s′, h− 1)

• it can be estimated with function SimQ(s, a, µ, h)

SimQ(s, a, µ, h)

sample (r̂, s′) that result of executing a at s

set q̂ := r̂

for i = 1 to h− 1 do

sample (r̂, s′′) that result of executing µ(s′, h− i) at s′

set q̂ := q̂ + r and s′ := s′′

end for

return q̂

Action Selection as a Multi-Armed Bandit Problem

For state s, base policy µ, and depth h, do:

• run SimQ(s, a, µ, h) w times to get estimations q̂a1, . . . , q̂aw

• estimate Qµ-value for action a as Q̂µ(s, a, h) =
1
w

∑w
i=1 q̂ai

• select action a that maximizes Q̂µ(s, a, h)

This is the Policy Rollout algorithm applied to base policy µ

calls to simulator per decision = |A|wh

Action Selection as a Multi-Armed Bandit Problem

For state s, base policy µ, and depth h, do:

• run SimQ(s, a, µ, h) w times to get estimations q̂a1, . . . , q̂aw

• estimate Qµ-value for action a as Q̂µ(s, a, h) =
1
w

∑w
i=1 q̂ai

• select action a that maximizes Q̂µ(s, a, h)

This is the Policy Rollout algorithm applied to base policy µ

calls to simulator per decision = |A|wh

Multi-Stage Rollouts

The Policy Rollout of µ is a policy; let’s refer to it by Rolloutµ

We can apply Policy Rollout to base policy Rolloutµ

The result is a policy called 2-Stage Rollout of µ; Rollout2µ

In general, we can apply Policy Rollout to base policy Rolloutk−1µ

to obtain the k-Stage Rollout of µ; Rolloutkµ

None of these policies consume space, but the time to compute them
is exponential in k:

• Rolloutµ requires |A|wh simulator calls

• Rollout2µ requires (|A|wh)2 simulator calls

• Rolloutkµ requires (|A|wh)k simulator calls

Multi-Stage Rollouts

The Policy Rollout of µ is a policy; let’s refer to it by Rolloutµ

We can apply Policy Rollout to base policy Rolloutµ

The result is a policy called 2-Stage Rollout of µ; Rollout2µ

In general, we can apply Policy Rollout to base policy Rolloutk−1µ

to obtain the k-Stage Rollout of µ; Rolloutkµ

None of these policies consume space, but the time to compute them
is exponential in k:

• Rolloutµ requires |A|wh simulator calls

• Rollout2µ requires (|A|wh)2 simulator calls

• Rolloutkµ requires (|A|wh)k simulator calls

Multi-Stage Rollouts

The Policy Rollout of µ is a policy; let’s refer to it by Rolloutµ

We can apply Policy Rollout to base policy Rolloutµ

The result is a policy called 2-Stage Rollout of µ; Rollout2µ

In general, we can apply Policy Rollout to base policy Rolloutk−1µ

to obtain the k-Stage Rollout of µ; Rolloutkµ

None of these policies consume space, but the time to compute them
is exponential in k:

• Rolloutµ requires |A|wh simulator calls

• Rollout2µ requires (|A|wh)2 simulator calls

• Rolloutkµ requires (|A|wh)k simulator calls

Multi-Stage Rollouts

The Policy Rollout of µ is a policy; let’s refer to it by Rolloutµ

We can apply Policy Rollout to base policy Rolloutµ

The result is a policy called 2-Stage Rollout of µ; Rollout2µ

In general, we can apply Policy Rollout to base policy Rolloutk−1µ

to obtain the k-Stage Rollout of µ; Rolloutkµ

None of these policies consume space, but the time to compute them
is exponential in k:

• Rolloutµ requires |A|wh simulator calls

• Rollout2µ requires (|A|wh)2 simulator calls

• Rolloutkµ requires (|A|wh)k simulator calls

Rollouts and Policy Iteration

As the horizon is finite, Policy Iteration always converges

For base policy µ, PI computes sequence 〈µ0 = µ, µ1, . . .〉 of policies

For large w, Q̂µ(s, a, h) ' r(s, a) +
∑

s′ p(s
′|s, a)Jµ(s′, h− 1)

• Rolloutµ = µ1 (1st iterate of PI) for sufficiently large w

• Rollout2µ = µ2 (2nd iterate of PI) for sufficiently large w

• Rolloutkµ = µk ; i.e., multi-stage rollout implements PI!

Theorem

For sufficiently large w and k, Rolloutkµ is optimal

Rollouts and Policy Iteration

As the horizon is finite, Policy Iteration always converges

For base policy µ, PI computes sequence 〈µ0 = µ, µ1, . . .〉 of policies

For large w, Q̂µ(s, a, h) ' r(s, a) +
∑

s′ p(s
′|s, a)Jµ(s′, h− 1)

• Rolloutµ = µ1 (1st iterate of PI) for sufficiently large w

• Rollout2µ = µ2 (2nd iterate of PI) for sufficiently large w

• Rolloutkµ = µk ; i.e., multi-stage rollout implements PI!

Theorem

For sufficiently large w and k, Rolloutkµ is optimal

Rollouts and Policy Iteration

As the horizon is finite, Policy Iteration always converges

For base policy µ, PI computes sequence 〈µ0 = µ, µ1, . . .〉 of policies

For large w, Q̂µ(s, a, h) ' r(s, a) +
∑

s′ p(s
′|s, a)Jµ(s′, h− 1)

• Rolloutµ = µ1 (1st iterate of PI) for sufficiently large w

• Rollout2µ = µ2 (2nd iterate of PI) for sufficiently large w

• Rolloutkµ = µk ; i.e., multi-stage rollout implements PI!

Theorem

For sufficiently large w and k, Rolloutkµ is optimal

Rollouts and Policy Iteration

As the horizon is finite, Policy Iteration always converges

For base policy µ, PI computes sequence 〈µ0 = µ, µ1, . . .〉 of policies

For large w, Q̂µ(s, a, h) ' r(s, a) +
∑

s′ p(s
′|s, a)Jµ(s′, h− 1)

• Rolloutµ = µ1 (1st iterate of PI) for sufficiently large w

• Rollout2µ = µ2 (2nd iterate of PI) for sufficiently large w

• Rolloutkµ = µk ; i.e., multi-stage rollout implements PI!

Theorem

For sufficiently large w and k, Rolloutkµ is optimal

Rollouts and Policy Iteration

As the horizon is finite, Policy Iteration always converges

For base policy µ, PI computes sequence 〈µ0 = µ, µ1, . . .〉 of policies

For large w, Q̂µ(s, a, h) ' r(s, a) +
∑

s′ p(s
′|s, a)Jµ(s′, h− 1)

• Rolloutµ = µ1 (1st iterate of PI) for sufficiently large w

• Rollout2µ = µ2 (2nd iterate of PI) for sufficiently large w

• Rolloutkµ = µk ; i.e., multi-stage rollout implements PI!

Theorem

For sufficiently large w and k, Rolloutkµ is optimal

Rollouts and Policy Iteration

As the horizon is finite, Policy Iteration always converges

For base policy µ, PI computes sequence 〈µ0 = µ, µ1, . . .〉 of policies

For large w, Q̂µ(s, a, h) ' r(s, a) +
∑

s′ p(s
′|s, a)Jµ(s′, h− 1)

• Rolloutµ = µ1 (1st iterate of PI) for sufficiently large w

• Rollout2µ = µ2 (2nd iterate of PI) for sufficiently large w

• Rolloutkµ = µk ; i.e., multi-stage rollout implements PI!

Theorem

For sufficiently large w and k, Rolloutkµ is optimal

Recursive Sampling (aka Sparse Sampling)

With sampling, we can estimate Jµ(s, h) for base policy µ

Can we use sampling to estimate J∗(s, h) directly?

Idea: use recursion based on Bellman Equation

Q∗(s, a, 0) = 0

Q∗(s, a, h) = r(s, a) +
∑
s′

p(s′|s, a)J∗(s, h− 1)

J∗(s, h) = max
a∈A(s)

Q∗(s, a, h)

Recursive Sampling (aka Sparse Sampling)

With sampling, we can estimate Jµ(s, h) for base policy µ

Can we use sampling to estimate J∗(s, h) directly?

Idea: use recursion based on Bellman Equation

Q∗(s, a, 0) = 0

Q∗(s, a, h) = r(s, a) +
∑
s′

p(s′|s, a)J∗(s, h− 1)

J∗(s, h) = max
a∈A(s)

Q∗(s, a, h)

Recursive Sampling

.

.

a’a

a a’

.

.

Recursive Sampling: Pseudocode

SimQ∗(s, a, h, w)

set q̂ := 0

for i = 1 to w do

sample (r̂, s′) that result of executing a at s

set best := −∞
foreach a′ ∈ A(s′) do

set new := SimQ∗(s′, a′, h− 1, w)

set best := max{best, new}
end foreach

set q̂ := q̂ + r̂ + best

end for

return q̂
w

Recursive Sampling: Properties

• For large w, SimQ∗(s, a, h, w) ' Q∗(s, a, h)

• Hence, for large w, can be used to choose optimal actions

• Estimation doesn’t depend on number of states!!

• There are bounds on accurracy but for impractical values for w

• The actions (space) is sampled uniformly; i.e., doesn’t bias
exploration towards most promising areas of the space

This algorithm is called Sparse Sampling

Adaptive Sampling

Recursive Sampling is uniform but it should be adaptive focusing
the effort in most promising parts of the space

An adaptive algorithm balances exploration in terms of the sampled
rewards. There are competing needs:

• actions w/ higher sampled reward should be preferred (exploitation)

• actions that had been explored less should be preferred (exploration)

Important theoretical results for Multi-Armed Bandit Problem

Adaptive Sampling for Multi-Armed Bandits (UCB)

a2a1 ak

Keep track of number n(i) of times arm i had been ’pulled’ and the
average sampled reward r̂i for arm i:

The UCB rule says:

Pull arm that maximizes r̂i +
√

2 lnn
n(i)

where n is the total number of pulls

Upper Confidence Bound (UCB)

Pull arm that maximizes r̂i︸︷︷︸
avg. samp. reward

+
√
2 lnn/n(i)︸ ︷︷ ︸

exploration bonus

• At the beginning, the exploration bonus ‘dominates’ and arms are
pulled, gathering information about them

• The accuracy of the estimate r̂i increases as the number of pulls to
arm i increases

• As the number of pulls increase, the exporation bonus decreases
and the ‘quality’ term dominates

Theorem

The expected regret after n pulls, compared to optimal behavior, is
bounded by O(log n). No algorithm achieves better regret

Upper Confidence Bound (UCB)

Pull arm that maximizes r̂i︸︷︷︸
avg. samp. reward

+
√
2 lnn/n(i)︸ ︷︷ ︸

exploration bonus

• At the beginning, the exploration bonus ‘dominates’ and arms are
pulled, gathering information about them

• The accuracy of the estimate r̂i increases as the number of pulls to
arm i increases

• As the number of pulls increase, the exporation bonus decreases
and the ‘quality’ term dominates

Theorem

The expected regret after n pulls, compared to optimal behavior, is
bounded by O(log n). No algorithm achieves better regret

What is the UCB Formula?

UCB(i) = r̂i +
√

2 lnn/n(i)

UCB(i) is an upper bound on a confidence interval for the true
expected reward ri for arm i; that is, w.h.p. ri < UCB(i)

After ‘enough’ pulls, r̂i +
√
2 lnn/n(i) < r∗ and arm i is not pulled

anymore

How many is enough?

With high probability, r̂i < ri +
√
2 lnn/n(i). Then,

r̂i +
√

2 lnn/n(i)

< ri + 2
√
2 lnn/n(i) < r∗

if 2
√
2 lnn/n(i) < r∗ − ri

Solving for n(i), n(i) > 8 lnn
(r∗−ri)2 (max. pulls of suboptimal arm i)

What is the UCB Formula?

UCB(i) = r̂i +
√

2 lnn/n(i)

UCB(i) is an upper bound on a confidence interval for the true
expected reward ri for arm i; that is, w.h.p. ri < UCB(i)

After ‘enough’ pulls, r̂i +
√
2 lnn/n(i) < r∗ and arm i is not pulled

anymore

How many is enough?

With high probability, r̂i < ri +
√
2 lnn/n(i). Then,

r̂i +
√

2 lnn/n(i)

< ri + 2
√
2 lnn/n(i) < r∗

if 2
√
2 lnn/n(i) < r∗ − ri

Solving for n(i), n(i) > 8 lnn
(r∗−ri)2 (max. pulls of suboptimal arm i)

What is the UCB Formula?

UCB(i) = r̂i +
√

2 lnn/n(i)

UCB(i) is an upper bound on a confidence interval for the true
expected reward ri for arm i; that is, w.h.p. ri < UCB(i)

After ‘enough’ pulls, r̂i +
√
2 lnn/n(i) < r∗ and arm i is not pulled

anymore

How many is enough?

With high probability, r̂i < ri +
√
2 lnn/n(i). Then,

r̂i +
√

2 lnn/n(i)

< ri + 2
√
2 lnn/n(i) < r∗

if 2
√
2 lnn/n(i) < r∗ − ri

Solving for n(i), n(i) > 8 lnn
(r∗−ri)2 (max. pulls of suboptimal arm i)

What is the UCB Formula?

UCB(i) = r̂i +
√

2 lnn/n(i)

UCB(i) is an upper bound on a confidence interval for the true
expected reward ri for arm i; that is, w.h.p. ri < UCB(i)

After ‘enough’ pulls, r̂i +
√
2 lnn/n(i) < r∗ and arm i is not pulled

anymore

How many is enough?

With high probability, r̂i < ri +
√
2 lnn/n(i). Then,

r̂i +
√

2 lnn/n(i)

< ri + 2
√
2 lnn/n(i) < r∗

if 2
√
2 lnn/n(i) < r∗ − ri

Solving for n(i), n(i) > 8 lnn
(r∗−ri)2 (max. pulls of suboptimal arm i)

What is the UCB Formula?

UCB(i) = r̂i +
√

2 lnn/n(i)

UCB(i) is an upper bound on a confidence interval for the true
expected reward ri for arm i; that is, w.h.p. ri < UCB(i)

After ‘enough’ pulls, r̂i +
√
2 lnn/n(i) < r∗ and arm i is not pulled

anymore

How many is enough?

With high probability, r̂i < ri +
√
2 lnn/n(i). Then,

r̂i +
√

2 lnn/n(i) < ri + 2
√
2 lnn/n(i)

< r∗

if 2
√
2 lnn/n(i) < r∗ − ri

Solving for n(i), n(i) > 8 lnn
(r∗−ri)2 (max. pulls of suboptimal arm i)

What is the UCB Formula?

UCB(i) = r̂i +
√

2 lnn/n(i)

UCB(i) is an upper bound on a confidence interval for the true
expected reward ri for arm i; that is, w.h.p. ri < UCB(i)

After ‘enough’ pulls, r̂i +
√
2 lnn/n(i) < r∗ and arm i is not pulled

anymore

How many is enough?

With high probability, r̂i < ri +
√
2 lnn/n(i). Then,

r̂i +
√

2 lnn/n(i) < ri + 2
√
2 lnn/n(i) < r∗

if 2
√

2 lnn/n(i) < r∗ − ri

Solving for n(i), n(i) > 8 lnn
(r∗−ri)2 (max. pulls of suboptimal arm i)

What is the UCB Formula?

UCB(i) = r̂i +
√

2 lnn/n(i)

UCB(i) is an upper bound on a confidence interval for the true
expected reward ri for arm i; that is, w.h.p. ri < UCB(i)

After ‘enough’ pulls, r̂i +
√
2 lnn/n(i) < r∗ and arm i is not pulled

anymore

How many is enough?

With high probability, r̂i < ri +
√
2 lnn/n(i). Then,

r̂i +
√

2 lnn/n(i) < ri + 2
√
2 lnn/n(i) < r∗

if 2
√

2 lnn/n(i) < r∗ − ri

Solving for n(i), n(i) > 8 lnn
(r∗−ri)2 (max. pulls of suboptimal arm i)

UCT: Upper Confidence Bounds Applied to Trees

• Generates an sparse tree of depth h, one node at a time by
stochastic simulation (Monte-Carlo Tree Search)

• Each stochastic simulation starts at root of tree and finishes in the
first node that is not in the tree

• The tree is grown to include such node and its value initialized

• The value is propagated upwards towards the root updating
sampled averages Q̂(s, a) along the way

• The stochastic simulation descends the tree selecting actions that
maximizes

Q̂(s, a) + C
√
2 lnn(s)/n(s, a)

UCT: Example

UCT: Example

UCT: Example

UCT: Example

UCT: Example

UCT: Success Histories

• Game of Go (GrandMaster level achieved in 9× 9 Go)

• Klondike Solitaire (wins 40% of games; human expert 36.6%))

• General Game Playing Competition

• Real-Time Strategy Games

• Canadian Traveller Problem

• Combinatorial Optimization

Summary

• Sometimes the problem is just too big to spply a traditional
algorithm or a search-based algorithm

• Monte-Carlo methods designed to work only with a simulator of the
problem

• These a are model-free algorithms for autonomous behaviour, yet
the model is used implictily through simulator

• Important theoretical results for the Multi-Armed Bandit Problem
that have far reaching consequences

• UCT algorithm applies the ideas of UCB to MDPs

• Big success of UCT in some applications

• UCT may require a great deal of tunning in some cases

References and Related Work I

Introduction:

� H. Geffner. Tutorial on Advanced Introduction to Planning. IJCAI 2011.

General MDPs and Stochastic Shortest-Path Problems:

� D. Bertsekas. Dynamic Programming and Optimal Control. Vols 1-2. Athena
Scientific.

� D. Bertsekas, J. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific.

� M. Puterman. Markov Decision Processes – Discrete Stochastic Dynamic
Programming. Wiley.

Algorithms for MDPs:

� D. Bertsekas. Dynamic Programming and Optimal Control. Vols 1-2. Athena
Scientific.

� M. Puterman. Markov Decision Processes – Discrete Stochastic Dynamic
Programming. Wiley.

References and Related Work II

� B. Bonet, E. Hansen. Heuristic Search for Planning under Uncertainty. In
Heuristics, Probability and Causality: A Tribute to Judea Pearl. College
Publications.

� R. Korf. Real-Time Heuristic Search. Artificial Intelligence 42, 189–211.

� A. Barto, S. Bradtke, S. Singh. Learning to Act Using Real-Time Dynamic
Programming. Artificial Intelligence 72, 81–138.

� E. Hansen, S. Zilberstein. LAO*: A Heuristic Search Algorithm that Finds
Solutions with Loops. Artificial Intelligece 129, 35–62.

� B. Bonet, H. Geffner. Labeled RTDP: Improving the Convergence of Real-Time
Dynamic Programming. ICAPS 2003, 12–21.

� B. Bonet, H. Geffner. Faster Heuristic Search Algorithms for Planning with
Uncertainty and Full Feedback. IJCAI 2003, 1233–1238.

� B. Bonet, H. Geffner. Learning Depth-First Search: A Unified Approach to
Heuristic Search in Deterministic and Non-Deterministic Settings, and its
Applications to MDPs. ICAPS 2006, 142–151.

� H. McMahan, M. Likhachev, G. Gordon. Bounded Real-Time Dynamic
Programming: RTDP with Monotone Upper Bounds and Performance
Guarantees. ICML 2005, 569–576.

References and Related Work III

� T. Smith, G. Simmons. Focused Real-Time Dynamic Programming for MDPs:
Squeezing More Out of a Heuristic. AAAI 2006, 1227–1232.

� J. Hoey, R. St-Aubin, A. Hu, C. Boutilier. SPUDD: Stochastic Planning Using
Decision Diagrams. UAI 1999, 279–288.

� Z. Feng, E. Hansen. Symbolic Heuristic Search for Factored Markov Decision
Processes. AAAI 2002, 455-460.

� Z. Feng, E. Hansen, S. Zilberstein. Symbolic Generalization for On-Line
Planning. UAI 2003, 209–216.

� C. Boutilier, R. Reiter, B. Price. Symbolic Dynamic Programming for
First-Order MDPs. IJCAI 2001, 690–697.

� H. Warnquist, J. Kvarnstrom, P. Doherty. Iterative Bounding LAO*. ECAI
2010, 341–346.

Heuristics:

� B. Bonet, H. Geffner. Labeled RTDP: Improving the Convergence of Real-Time
Dynamic Programming. ICAPS 2003, 12–21.

� B. Bonet, H. Geffner. mGPT: A Probabilistic Planner Based on Heuristic
Search. JAIR 24, 933–944.

References and Related Work IV

� R. Dearden, C. Boutilier. Abstraction and Approximate Decision-Theoretic
Planning. Artificial Intelligence 89, 219–283.

� T. Keller, P. Eyerich. A Polynomial All Outcome Determinization for
Probabilistic Planning. ICAPS 2011.

Monte-Carlo Planning:

� A. Fern. Tutorial on Monte-Carlo Planning. ICAPS 2010.

� = D.P. Bertsekas, J.N. Tsitsiklis, C. Wu. Rollout algorithms for combinatorial
optimization. Journal of Heuristics 3: 245–262. 1997.

� M. Kearns, Y. Mansour, A.Y. Ng. A sparse sampling algorithm for near-optimal
planning in large MDPs. IJCAI 99, 1324–1331.

� P. Auer, N. Cesa-Bianchi, P. Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine Learning 47: 235–256. 2002.

� Success UCT: various: CTP, Sylver’s POMDPs, Go, others

� G.M.J. Chaslot, M.H.M. Winands, H. Herik, J. Uiterwijk, B. Bouzy. Progressive
strategies for Monte-Carlo tree search. New Mathematics and Natural
Computation 4. 2008.

References and Related Work V

� L. Kocsis, C. Szepesvari. Bandit based Monte-Carlo planning. ECML 2006,
282–293.

� S. Gelly, D. Silver. Combining online and offline knowledge in UCT. ICML 2007,
273–280.

� H. Finnsson, Y. Björnsson. Simulation-based approach to general game playing.
AAAI 2008, 259–264.

� P. Eyerich, T. Keller, M. Helmert. High-Quality Policies for the Canadian
Traveler’s Problem. AAAI 2010.

� R. Munos, P.A. Coquelin. Bandit Algorithms for Tree Search. UAI 2007.

� R. Ramanujan, A. Sabharwal, B. Selman. On Adversarial Search Spaces and
Sampling-based Planning. ICAPS 2010, 242–245.

� D. Silver, J. Veness. Monte-Carlo Planning in Large POMDPs. NIPS 2010.

� R.K. Balla, A. Fern. UCT for Tactical Assault Planning in Real-Time Strategy
Games. IJCAI 2009, 40–45.

International Planning Competition:

� 2004

References and Related Work VI

� 2006

� 2008

� 2011

	Introduction
	Markov Decision Processes (MDPs)
	Algorithms
	Heuristics (few thoughts)
	Monte-Carlo Planning
	References
	References

