
Replaying Type Sequences in Forward Heuristic Planning

Tomás de la Rosa and Daniel Borrajo and Angel Garcı́a Olaya
Departamento de Informática, Universidad Carlos III de Madrid

Avda. de la Universidad, 30. Leganés (Madrid). Spain
trosa@inf.uc3m.es, dborrajo@ia.uc3m.es, agolaya@inf.uc3m.es

Abstract
Heuristic Planning is nowadays one of the top approaches for
AI Planning. Although current heuristic planners are quite
efficient, the time spent in computing heuristics is still an is-
sue, since this task must be repetitively done for each state
explored in the search process. We propose that domain type
sequences can be learned to support the heuristic search and
to avoid continuously computing heuristics. We present in the
paper a CBR approach for extracting, retrieving and replay-
ing type sequences within a heuristic search. We also present
the results of testing this idea within two of the classical IPC
domains.

Introduction
Heuristic Planning has proven to be a successful approach
for STRIPS Planning (Fikes & Nilsson 1971). Most of the
state of the art planners such as HSP (Bonet & Geffner 2001),
FF (Hoffmann & Nebel 2001) or YAHSP (Vidal 2004) do
heuristic search to generate plans. The common idea of this
kind of heuristic search is to compute heuristics solving a
relaxed version of the original problem, ignoring the delete
list of actions in the domain description. This was first intro-
duced by (McDermott 1996) and nowadays is the most com-
mon relaxation for planning tasks. Although these planners
are quite efficient, the time spent in computing heuristics is
still an issue. The basic problem is that for each state ex-
plored during the search process, the relaxed task is solved
to obtain the heuristic. We propose that Case Based Rea-
soning (CBR) can be used as a learning technique to guide
the search process and help with the burden of computing
heuristics.

In the past, CBR seemed an interesting approach for not
planning from scratch. ANALOGY (Veloso & Carbonell
1993) fully integrated CBR with generative planning based
on a derivational analogy process, in which lines of reason-
ing are transfered and adapted to a new problem. This idea
was attractive to planning because it reasons over the plan-
ning trace rather than other CBR techniques that just search
the solution with a transformational adaptation. In forward
heuristic search it is not possible to directly obtain a causal
justification as it was stored in ANALOGY’s cases. How-
ever, features of the planning trace can be still recorded. We

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

suggest that sequences of visited states, stored as sequences
of domain types, can be learned and later transfered as con-
trol knowledge to guide the search. These sequences can be
viewed as traces of successful paths from previous solved
problems.

This paper presents the current state of this work, in which
we are using a CBR approach to support a heuristic planning
process. In the following sections we introduce the SAYPHI
Architecture, composed of a heuristic planner, and a CBR
system. Then, we describe the behaviour of this system
with the phases of the classical CBR cycle (Aamodt & Plaza
1994). First, we explain the extraction of type sequences and
how they are stored as cases. Then, we describe the retrieval
of sequences needed in order to solve the new problem and
the adaptation of these retrieved sequences. Afterwards, we
explain the replay process, which integrates the CBR tech-
nique within the heuristic search in an algorithm that we call
mixed hill-climbing. We also present results of testing this
idea within two of the International Planning Competition
(IPC) domains. Finally, we discuss related work and present
some conclusions.

The Planner
We are currently building SAYPHI, a learning architecture
in which several techniques for control knowledge acqui-
sition will be integrated with a common heuristic planner.
We have seen in the past as in PRODIGY (Veloso et al.
1995), that this kind of systems greatly promotes research in
planning and learning. The SAYPHI planner is an heuris-
tic planner that performs forward state-space search. The
planner uses the heuristic function of the relaxed plan as
FF (Hoffmann & Nebel 2001). This heuristic is computed
extracting a solution from a relaxed GRAPHPLAN (Blum &
Furst 1995). The planner also integrates the helpful actions
technique for pruning state successors and only evaluate
promising actions that add sub-goals needed later. SAYPHI
has been developed in LISP, and at the current time solves
STRIPS problems written in PDDL (Fox & Long 2002), the
standard language for describing planning tasks within the
AI planning community.

Without any control knowledge, the planner performs a
standard hill-climbing algorithm as follows. Given an initial
state S0 and a set of goals G, a search tree is expanded with
all applicable actions belonging to the helpful actions. For



each state successor a heuristic value is computed and the
node with the best heuristic is chosen. The applied action
is added to the plan and the process starts over again in the
selected node, until G is contained in a reached state. The
resulting plan is the forward chaining of all applied actions
of the selected nodes. Considering only the helpful actions
for expanding the search tree makes the search incomplete,
since many applicable actions are pruned. If the search pro-
cess fails, a complete best-first algorithm is performed as a
second attempt to obtain a plan.

The heuristic of the relaxed GRAPHPLAN consists on
building in any search state a planning graph from which
a solution to the relaxed task could be extracted. This re-
laxed problem is the same problem, but ignoring the delete
list of actions. The relaxed GRAPHPLAN is represented as a
sequence P0, A0, . . . , At−1, Pt of propositions layers Pi and
actions layers Ai. The planning graph starts with P0 = S0

as the initial proposition layer. All applicable actions are in-
serted in the next action layer and a new proposition layer is
built with the add effects of applied actions. This process re-
peats until a proposition layer contains G. After the relaxed
GRAPHPLAN expansion, a solution to the relaxed problem (a
relaxed plan) is extracted, performing a backward chaining
of actions through the graph. Then, the number of actions
that appear in the solution to the relaxed problem is taken as
an estimate of how far the goal is from the current state.

Learning Type Sequences
Most PDDL domains group objects in types. The idea of
learning type sequences comes from the observation of typ-
ical state transitions that each type of object has. We pro-
pose that this planning feature can be learned with a CBR
approach. In a CBR cycle, type sequences are extracted
from previous solved problems and are stored in the case
base. With a new problem to solve, a retrieve process se-
lects most similar sequences to the new problem. The re-
trieve sequences are adapted and used in the replay process
in order to solve the new problem. For the explanation of
these CBR processes, we are going to use the Depots do-
main. This domain is part of the IPC collection, in which
trucks transport crates around depots and distributors, and
crates must be stacked onto pallets or on top of other crates
at their destination.

Storing
To extract a case, we assume that the planner has
solved a problem. A type sequence is formed by a
set of pairs (object sub-state, applied action to reach the
state). An object sub-state is the set of all facts in a
state in which the object is present. Thus, a subset
of the initial state like [(on crate0 pallet0) (at
crate0 depot0) (clear crate0)], can be trans-
lated to a sub-state of type ”crate” as [(on <x> )(at
<x> )(clear <x>)] where <x> represents any in-
stance of a crate and the underscore sign represents another
object in the literal which is not important for the sub-state
of that type. The pair, object sub-state and applied action,
forms a step in the type sequence and that is what we call

a sub-state relation. Since many actions in the sequence are
not relevant to the object, assuming that the object sub-state
does not change either, a no-op is stored with the same
sub-state. Then, from the solution path to a problem we can
compute the complete sequence of each object, storing all
sub-state relations in the order they appear.

Figure 1 shows a type sequence of a crate, extracted from
a problem in which it was initially on a pallet, with another
crate on top of it, and in the goal state it was at another
place, on another pallet, and clear. Dots in the applied ac-
tion represent the action parameters not relevant to the sub-
state relation. The first step has no applied action, since it
corresponds to the crate initial sub-state. The no-op in
the sequence corresponds to a Drive action, for which the
crate sub-state has not changed. A number is stored with the
no-op, in the example 1. It represents the numbers of ap-
plied actions in which the current sub-state has not changed.

[(at <x>_)(on <x>_)(on _<x>),]

[(at <x>_)(on <x>_)(clear <x>), (LIFT..<x>.)]

[(lifting <x>_), (LIFT .<x>..)]

[(in <x>_), (LOAD .<x>..)]

[(in <x>_), (NO-OP 1)]

[(lifting <x>_), (UNLOAD .<x>..)]

[(at<x>_)(on<x>_)(clear <x>), (DROP.<x>..)]

Figure 1: An example of a type sequence relevant to a crate.

After the construction of sequences, cases are grouped by
type of objects and a merge process determines if the new
case to store is part of the case base or it is just a different
case. Though a case could have no-op in different places,
the merge process saves the sequences with less number of
no-op For example, actions in a typical transition of a crate
sequence are Lift, Load. If a new case of type crate has
the transitions Lift, no-op, Load, it is considered the
same case by the merge process, and the first sequence is
kept.

Retrieving
When a new problem to be solved arrives to the planner,
cases for each object appearing in the goals must be re-
trieved. For this, we perform a retrieval step comparing the
goal sub-state of an object with the last sub-state of all se-
quences in the case base of the corresponding type. Then,
the initial sub-state of an object is compared with the first
sub-state of the sequences that meet the first criteria. All re-
trieved sequences are kept in a replay table that will be used
in the search process. The size of the replay table depends
on how many sequences are retrieved, but at most there is
one sequence for each different object instance appearing in
the goals. Future work will use more sophisticated retrieval,
but at this time this retrieval scheme works reasonably well.

As an example of the retrieval, suppose a set of
goals G = ((on crate1 pallet1) (on crate2
crate1)). We search in the case base a sequence of



type pallet for pallet1, and sequences of type crate for
crate1 and crate2. In order to retrieve a sequence for
crate1, selected cases must have a sequence that ends
with the sub-state (on <x> )(on <x>) with the cor-
responding initial sub-state. If no sequence matches, the ob-
ject is not considered in the construction of the replay table.

Adapting
If cases were used simply as type sequences, they could
represent many instantiated sequences in the new problem.
Since sub-state relations only take care of a particular refer-
enced object, the other objects in the literals could receive
as many bindings as objects of the ignored type. To address
this issue, we do an early extraction of a relaxed plan, and
obtain the goals membership of the relaxed GRAPHPLAN.
This goals membership is built in the relaxed plan extrac-
tion process, and is represented with the sequence G1,. . . ,
Gt, where Gi is the set of facts achieved by applied ac-
tions of the relaxed plan, which belong to the Ai−1 action
layer. With this goal membership we can transform type se-
quences to real objects sequences, searching the right bind-
ings through the goal layers. Suppose that the sequence
in Figure 1 is retrieved for crate1 appearing in the goal
(on crate1 pallet1). In the sixth step, the literal
(lifting crate1 ) could be with any hoist of the
problem description, but the Gt−1 layer has the right bind-
ing, in example (lifting crate1 hoist1) since it is
a precondition to achieve the goal present in Gt layer. Since
the relaxed GRAPHPLAN does not always represent the real
order of achieving goals and subgoals, not all sequences are
fully instantiated and additional computing for the instanti-
ation is done during the replay.

Replaying
For the search process we use a mixed hill-climbing algo-
rithm, which combines the heuristic function and the advise
of the sequences in the replay table. The search goes as fol-
lows: at any state, all helpful actions are considered as state
successors. Helpful actions are all applicable actions that
add any fact to G1 layer in goals membership. Then, the
process asks for a CBR advise of which node to select. If an
advise is received, it goes to the recommended state; if not,
it computes the heuristic for all successors and chooses the
state corresponding to the best heuristic value.

To advise, the replay table holds the current pointer to all
of the retrieved sequences, and if a state successor matches
the next sub-state relation in the sequences, it is returned as
the recommended successor. This match is performed con-
verting the state successor to a sub-state relation relevant to
the sequence with which it is going to be compared. In this
way, the search behaves following sequences of learned ex-
periences any time they are identified in the current search.
Since not all sequences are fully instantiated at the adapta-
tion phase, a stack of visited sub-states is kept in memory
to avoid undoing the path reached in the sequence. Each se-
quence in the replay table keeps the visited sub-state when a
step of the sequence is followed in order to hold the instanti-
ated sub-state of the sequence used in the search. Since more
than one state could be returned in the advise process, all

cases in the replay table are sorted by the remaining length
of sequences. Thus, when two or more states are good for
advise, the one with more steps ahead is preferred. This kind
of selection helps to avoid reaching the end of a sequence
too early, and it allows to advance all retrieved sequences
without forgetting any of them. Moreover, since retrieved
sequences may share facts of their sub-states, if a sequence
is advanced to the next sub-state relation, all sequences that
share this sub-state are also advanced. Otherwise, if a node
in the search is selected by the heuristic, the replay table is
traversed to see if any sequence should be also advanced.
If a sequence in the reply table points to a no-op, the se-
quence is not used again until it is advanced as many times
as the number with the no-op. This guarantees at least that
a number of actions, not relevant to the object, are applied
before the sequence advises a new sub-state.

Function mixed hill climbing(S0, G, replay table)
S = S0

while G * S do
C = expand state(S)
for each q in seq sorted(replay table)
for each c in C
if (recommend(c, q) = true
and not guided then
guided = true
S′ = c
advance(q)

endif
endfor

endfor
if guided

S = S′

else
for each c in C

h(c) = h relaxedplan(c)
endfor
S = best h state(C)

endif
endwhile

Figure 2: Pseudo-code for the mixed hill-climbing algo-
rithm.

Figure 2 shows a pseudo-code for the mixed hill-climbing
algorithm we have described. The recommend function calls
the CBR Advisor, which tries to match the child node c
with a sequence q in the replay table. The seq sorted func-
tion sorts the sequence by the remaining length of the se-
quences, and the advance function advances the used se-
quence to the next sub-state relation. The h relaxedplan
function computes the heuristic value for the child node c
and the best h state function selects the node with the best
heuristic, in this case the minimum value. As a result of
this process, in many of the states that belong to the solution
path, it is not necessary to compute the heuristic for the state
siblings. This could intuitively suggest less effort for the
planner, since it would call less times the heuristic function.



Results
For the experiments we have given the planner 10 random
training problems from the Depots domain for extracting
the type sequences. These problems had up to 14 objects
instances and up to 3 goals. Then we generated the test set
with 50 random problems up to 17 objects instances and up
to 6 goals. All these problems were generated with the ran-
dom problem generator supplied by the IPC Collection.

Then, we made our first test solving the problem set alone
with the planner with a hill-climbing algorithm. The second
test was supported by the CBR advise described in previ-
ous sections. The hill-climbing algorithm solved 96% of
the problems and the mixed hill-climbing with CBR sup-
port solved 78%. The reason of these decrease is that we
have not deal the goal ordering issue yet. This goal order-
ing could affect how the sequences may be selected in the
replay and it yields the algorithm to get out of the way to the
solution. Although the difference in the number of solved
problems, the CBR-Supported search improves the planning
time in problems solved by both techniques.

Figure 3: Accumulated time solving Depots random prob-
lems.

Figure 3 shows the result of the accumulated time used
by the planner to solve the problems with the hill-climbing
algorithm and with the search supported by the CBR advise.
The accumulated time is from the problems solved by both
techniques. The time improvement is due to the heuristic
evaluations skipped when a state is advised by the CBR dur-
ing the search.

We have also tested this idea within the Rovers domain.
This domain is part of the IPC 2002 Collection, which was
inspired by planetary rovers problems. This domain requires
that a collection of rovers navigate a planet surface, finding
samples, taking pictures and communicating them back to a
lander. For the experiment, we have generated 10 training
random problems, which were solved to populate the case
base. Problems in the training set have 13 objects instances.

Then, 30 test problems were generated to compare the per-
formance of the search with and without the support of CBR.
Problems in the test set have between 14 and 18 objects in-
stances.

Figure 4: Accumulated time solving Rovers random prob-
lems.

Figure 4 shows the result of the accumulated time used by
the planner to solve the problems with the standard search
and with the search supported by CBR. We can see in the
curve a better performance in the CBR supported search.
In a detailed review of solved problems, a 36.67% of them
obtained the same solution length. A 13.33% of the prob-
lems had a better solution with the CBR supported search,
but 50.0% had a longer solution length. Although here is a
lost of plans quality, the difference is not really significant.
The average plan length with the standard search is 14.53 vs.
15.13 of the CBR supported search. As we have mentioned
earlier, the goal ordering may affect those problems in which
the CBR supported search obtained a worse solution.

Related Work
The idea of extracting information from the domain types
description is not new to the community. Our work is re-
lated to states invariants extracted from a domain analysis
as in TIM (Fox & Long 1998) and (Long & Fox 2000).
With a pre-processing tool, they obtain Finite State Ma-
chines (FSM) that represent states in which a type of object
can be and can move to. In our case this knowledge is ob-
tained dynamically while the case base is been populated in
form of sequences. Another difference is that states invari-
ants help planners to build efficient action schemas, needed
to compute applicable actions, and type sequences are used
to guide the search through the path of learned experiences.

Other works that integrate CBR with planning have been
done in the past. ANALOGY (Veloso & Carbonell 1993)
that we have mentioned earlier, PARIS (Bergmann & Wilke
1996) which stores cases in different abstraction levels of a
solved problem and CAPLAN-CBC (H. Muñoz Avila 1994)



which performs plan-space search and replay. The novel
contribution of our new approach is that the knowledge of
the case base is abstracted in domain types and these cases
represents sequences of state transitions. Moreover, cases
do not represent directly plans of solved problems because
a single plan can generate multiple type sequences. Our ap-
proach is also interesting because it gives an additional way
to address heuristic planning.

Conclusions and Future Work
In this work we have shown a new approach to the forward
state-space search heuristic planning, introducing a mixed
hill-climbing that is advised by a CBR component. It uses
type sequences learned from previous solved problem, for
suggesting next states in the search process. The heuristic
function is still present in states in which is not possible to
get an advise. We have seen that the planner performance
time can be improved with this technique, since the plan-
ner may do less heuristic computation. The key idea of this
work opens a variety of possibilities for helping heuristic
planning. Any kind of learning technique that could pre-
dict somehow a next state in the search, would be applicable
within the mixed hill-climbing algorithm. Thinking on this,
we continue developing SAYPHI, so we can research over
extension to this approach.

The next target of this work is to extract additional in-
formation from the relaxed GRAPHPLAN or from the search
tree of solved problems to address the issues of goals de-
pendencies and goals ordering. This additional knowledge
could be stored with type sequences within cases and could
be used in the replay phase in order to perform a more in-
formed search. We also want to know how this approach
scales up when the case based is populated with more cases
or when more challenging problems are given to the CBR
planner.

Acknowledgments
This work has been partially supported by the Spanish MEC
project TIN2005-08945-C06-05 and regional CAM-UC3M
project UC3M-INF-05-016.

References
Aamodt, A., and Plaza, E. 1994. Foundational issues,
methodological variations, and system approaches. AI
Communications 7, no.1:39–59.
Bergmann, R., and Wilke, W. 1996. Paris: Flexible plan
adaptation by abstraction and refinement. In Voss, A., ed.,
ECAI (1996) Workshop on Adaptation in Case-Based Rea-
soning. John Wiley & Sons.
Blum, A. L., and Furst, M. L. 1995. Fast planning through
planning graph analysis. In Mellish, C. S., ed., Proceed-
ings of the 14th International Joint Conference on Artificial
Intelligence, IJCAI-95, volume 2, 1636–1642. Montréal,
Canada: Morgan Kaufmann.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1-2):5–33.

Fikes, R. E., and Nilsson, N. J. 1971. Strips: A new ap-
proach to the application of theorem proving to problem
solving. Artificial Intelligence 2:189–208.
Fox, M., and Long, D. 1998. The automatic inference of
state invariants in TIM. Journal of Artificial Intelligence
Research 9:317–371.
Fox, M., and Long, D. 2002. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. Uni-
versity of Durham, Durham (UK).
H. Muñoz Avila, J. Paulokat, S. W. 1994. Controlling non-
linear hierarchical planning by case replay. In in working
papers of the Second European Workshop on Case-based
Reasoning, 195–203.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research 14:253–302.
Long, D., and Fox, M. 2000. Automatic synthesis and use
of generic types in planning. In Proceedings of AIPS 2000,
196–205.
McDermott, D. 1996. A heuristic estimator for means-ends
analysis in planning. In Proceedings of the Third Interna-
tional Conference on AI Planning Systems.
Veloso, M. M., and Carbonell, J. G. 1993. Derivational
analogy in PRODIGY: Automating case acquisition, stor-
age, and utilization. Machine Learning 10(3):249–278.
Veloso, M.; Carbonell, J.; Pérez, A.; Borrajo, D.; Fink, E.;
and Blythe, J. 1995. Integrating planning and learning:
The PRODIGY architecture. Journal of Experimental and
Theoretical AI 7:81–120.
Vidal, V. 2004. A lookahead strategy for heuristic search
planning. In Proceedings of the Fourteenth International
Conference on Automated Planning and Scheduling, 150–
160.


