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Abstract

The current evaluation functions for heuristic planning are ex-
pensive to compute. In numerous domains these functions
give good guidance on the solution, so it worths the compu-
tation effort. On the contrary, where this is not true, heuris-
tics planners compute loads of useless node evaluations that
make them scale-up poorly. In this paper we present a novel
approach for boosting the scalability of heuristic planners
based on automatically learning domain-specific search con-
trol knowledge in the form of relational decision trees. Par-
ticularly, we define the learning of planning search control as
a standard classification process. Then, we use an off-the-
shelf relational classifier to build domain-specific relational
decision trees that capture the preferred action in the differ-
ent planning contexts of a planning domain. These contexts
are defined by the set of helpful actions extracted from the
relaxed planning graph of a given state, the goals remaining
to be achieved, and the static predicates of the planning task.
Additionally, we show two methods for guiding the search
of a heuristic planner with relational decision trees. The first
one consists of using the resulting decision trees as an action
policy. The second one consists of ordering the node evalua-
tion of the Enforced Hill Climbing algorithm with the learned
decision trees. Experiments over a variety of domains from
the IPC test-benchmarks reveal that in both cases the use of
the learned decision trees increase the number of problems
solved together with a reduction of the time spent.

Introduction

During the last years, heuristic planning has achieved signif-
icant results and has become one of the most popular plan-
ning paradigms. However, the current domain-independent
heuristics are still very expensive to compute. As a conse-
quence, heuristic planners suffer from scalability problems
because they spent most of the planning time computing
useless node evaluations. This effect becomes more prob-
lematic in domains where the heuristic function gives poor
guidance on the true solution (e.g. blocksworld) given that
useless node evaluations happen more frequently.

Since STRIPS, Machine Learning has been a successful
tool to automatically define domain-specific knowledge that
improves the performance of automated planners. In the re-
cent years, we are living a renewed interest in using Ma-
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chine Learning to automatically extract knowledge that im-
proves the performance of planners, specially targeted to-
wards heuristic ones. Some examples are:

e Learning macro-actions (Botea et al. 2005; Coles &
Smith 2007): macro-actions result from combining the
actions that are more frequently used together. They have
been used in heuristic planning to reduce the search tree
depth. However, this benefit decreases with the number of
new macro-actions added as they enlarge the branching
factor of the search tree causing the utility problem. To
overcome this problem, one can use different filters that
decide on the applicability of the macro-actions (Newton
et al. 2007). This approach does not consider the goals of
the planning task, so macros that helped in a given prob-
lem may be useless for different ones.

e Learning cases: Cases consist of traces of past solved
planning problems. But, unlike macro-actions, cases can
memorize goals information. Recently, typed sequences
cases have been used in heuristic planning for node order-
ing during the plan search. They have shown to reduce
the number of heuristic evaluations (De la Rosa, Garcia-
Olaya, & Borrajo 2007). This technique still relies on
the heuristic function, so it is not appropriate for domains
where the heuristic is not accurate, such as domains where
big plateaus appear, like the Blocksworld.

e [earning the heuristic function: In this approach (Yoon,
Fern, & Givan 2006; Xu, Fern, & Yoon 2007), a state-
generalized heuristic function is obtained through a re-
gression process. The regression examples consist of
observations of the true distance to the goal from di-
verse states, together with extra information from the re-
laxed planning graph. This approach is able to provide
a more accurate heuristic function that captures domain
specific regularities. However, the result of the regression
is poorly understandable by humans making the verifica-
tion of the correctness of the acquired knowledge difficult.

e Learning general policies (Khardon 1999; Martin &
Geftner 2004; Yoon, Fern, & Givan 2007): A general
policy is a mapping of the problem instances of a given
domain (world state plus goals) into the preferred action
to be executed in order to achieve the goals. Thereby, a
good general policy is able to solve any possible prob-
lem instance of a given domain by simply executing the



general policy in every current state without any search
process. Given the relational representation of the Al
planning task, it is easier to represent, learn and under-
stand relational policies than accurate evaluation func-
tions. Moreover, the techniques for learning general poli-
cies also perform well in stochastic versions of the same
problems (Fern, Yoon, & Givan 2006).

The work presented in this paper is included in the last
group. Particularly, we present a new approach, which
we have called ROLLER, for learning general policies for
planning by building domain-dependent relational decision
trees from the helpful actions of a forward-chaining heuristic
planner. These decision trees are built with an off-the-shelf
relational classifier and capture which is the best action to
take for each possible decision of the planner in a given do-
main. The resulting decision trees can be used either as a
policy to directly solve planing problems or as a guide for
ordering node evaluations in a heuristic planning algorithm.

The paper is organized as follows. The first section de-
scribes the basic notions in heuristic planning and what is
a helpful context. The second section explains the concept
of relational decision trees and how to learn planning con-
trol knowledge with them. The third section shows different
ways of how decision trees can be applied to assist heuristic
planning. Then, the fourth section presents the experimental
results obtained in some IPC benchmarks. The fifth section
discusses the related work, and finally the last section dis-
cusses some conclusions and future work.

Helpful Contexts in Heuristic Planning

We follow the propositional STRIPS formalism to describe
our approach. We define a planning task P as the tuple
(L, A, I, G) with L the set of literals of the task, A the set of
actions, where each action a = (pre(a), add(a), del(a)). T
is the set of literals describing the initial state and G the set
of literals describing the goals. Under this definition, solv-
ing a planning task implies finding a plan P as the sequence
(ai,...,ay) that transforms the initial state into a state in
which the goals have been achieved.

The concept of helpful context relies on some properties
of the relaxed plan heuristic and the extraction of the set
of helpful actions, both introduced in the FF planner (Hoff-
mann & Nebel 2001). FF heuristic returns the number of
actions in the relaxed plan denoted by P, which is a solu-
tion of the relaxed planning task P*; a simplification of the
original task in which the deletes of actions are ignored. The
relaxed plan is extracted from the relaxed planning graph,
which is built as a sequence of fact and action layers. This
sequence, represented by (Fy, Ao, ..., A, F}), describes
a reachability graph of the applicable actions in the relaxed
task. For each search state the length of the relaxed plan ex-
tracted from this graph is used as the heuristic estimation of
the corresponding state. Moreover, the relaxed plan extrac-
tion algorithm marks a set of facts GG; in the planning graph,
for each fact layer I3, as a set of literals that are goals of the
relaxed planning task or are preconditions of some actions
in a subsequent layer in the graph. Additionally, the set of
helpful actions are defined as

helpful(s) = {a € A| add(a) NGy # 0}
The helpful actions are used in the search as a pruning tech-
nique, because they are considered as the only candidates
for being selected during the search.

Given that each state generates its own particular set of
helpful actions, we argue that the helpful actions, together
with the remaining goals and the static literals of the plan-
ning task, encode a useful context related to each state. For-
mally, we define the helpful context, H(s), of a state s as:

H(s) = {helpful(s), target(s), static(s)}

where target(s) C G describes the set of goals not
achieved in state s (target(s) = G — s), and static(s) =
static(I) is the set of literals that remain true during the
search, since they are not changed by any action in the prob-
lem. The aim of defining this context is to determine in later
planning episodes, which action within the set of applicable
ones should be selected to continue the search.

Learning General Policies with Decision Trees
ROLLER follows a three-step process for learning the general
policies building relational decision trees:

1. Generation of learning examples. ROLLER solves a set of
training problems and records the decisions made by the
planner when solving them.

2. Actions Classification. ROLLER obtains a classification

of the best operator to choose in the different helpful con-
texts of the search according to the learning examples.

3. Bindings Classification. For each operator in the domain,

ROLLER obtains a classification of the best bindings (in-
stantiated arguments) to choose in the different helpful
contexts of the search according to the learning examples.

The process for the generation of the learning examples is
shared by both classification steps. The learning is separated
into two classification steps in order to build general policies
with off-the-shelf classifiers. The fact that each planning ac-
tion may have different arguments (in terms of arguments
type and arguments number) makes unfeasible, for many
classifiers, the definition of only one learning target con-
cept. Besides, We believe that this two-step decision pro-
cess is also clearer from the decision-making point of view,
and helps users to understand the generated policy better by
focusing on either the decision on which action to apply, or
which bindings to use given a selected action.

Generation of Learning Examples

With the aim of providing the classifier with learning ex-
amples corresponding to good quality planning decisions,
ROLLER solves small training problems first using the En-
forced Hill Climbing algorithm (EHC) (Hoffmann & Nebel
2001), and then, it refines the found solution with a Depth-
first Branch-and-Bound algorithm (DfBnB) that increas-
ingly generates better solutions according to a given met-
ric, the plan length in this particular work. The final search
tree is traversed and all nodes belonging to one of the so-
lutions with the best cost are tagged for generating training



instances for the learner. Specifically, for each tagged node,
ROLLER generates one learning example consisting of:

o the helpful context of the node, i.e., the helpful actions
extracted from the node siblings plus the set of remaining
goals and the static predicates of the planning problem.

e the class of the node. For the Actions Classification the
class indicates the operator of the node applied action. For
the Bindings Classification the class indicates whether the
node and their siblings of the same operator are part (se-
lected) or not (rejected) of one of the best solutions.

Finally, the gathered learning examples are saved in two
different ways, one for each of the two classification pro-
cesses (actions and bindings).

The Classification Algorithm

A classical approach to assist decision making consists of
gathering a significant set of previous decisions and build-
ing a decision tree that generalizes them. The leaves of the
resulting tree contain the decision to make and the internal
nodes contain the conditions over the examples features that
lead to those decisions. The common way to build these
trees is following the Top-Down Induction of Decision Trees
(TDIDT) algorithm (Quinlan 1986). This algorithm builds
the decision tree repeatedly splitting the set of learning ex-
amples by the conditions that maximize the examples en-
tropy. Traditionally, the learning examples are described in
an attribute-value representation. Therefore, the conditions
of the decision trees represent tests over the value of a given
attribute of the examples. On the contrary, decisions in Al
planning are described relationally: a given action is cho-
sen to reach some goals in a given context all described in
predicate logic.

Recently, new algorithms for building relational decision
trees from examples described as logic facts have been de-
veloped. This new relational learning algorithms are sim-
ilar to the propositional ones except that the conditions in
the tree consist of logic queries about relational facts hold-
ing in the learning examples. Since the space of potential
relational decision trees is normally huge, these relational
learning algorithms are biased according to a specification
of syntactic restrictions called language bias. This specifica-
tion contains the predicates that can appear on the examples,
the target concept, and some learning-specific knowledge as
type information, or input and output variables of predicates.
In our approach all this language bias is automatically ex-
tracted from the PDDL definition of the planning domain.

Along this work we used the tool TILDE (Blockeel & De
Raedt 1998) for both the action and bindings classification.
This tool implements a relational version of the TDIDT al-
gorithm, though we could have used any other off-the-shelf
tool for relational classification.

Learning the Actions Tree
The inputs to the actions classification are:
o The language bias, that specifies restrictions in the val-

ues of arguments of the learning examples. In our
case, this bias is automatically extracted from the PDDL

domain definition and consists of the predicates for
representing the target concept, i.e., the action to se-
lect, and the background knowledge, i.e., the help-
ful context. Figure 1 shows the language bias spec-
ified for learning the action selection for the Satellite
domain. The target concept is defined by the pred-
icate selected (+Example, +Exprob, -Class) .
where Examp e is the identifier of the decision, Exprob
is a training problem identifier for sharing static facts
knowledge between examples, and Class is the name of
the action selected. And the helpful context is specified
by three types of predicates: The literals capturing the
helpful actions candidate_A;, the predicates that ap-
pear in the goals target_goal_G; and the static pred-
icates static_fact.S;. All these predicates are ex-
tended with extra arguments: Example that links the lit-
erals belonging to the same example, and Exprob that
links the static facts belonging to the same problem.

% The target concept

predict (selected (+Example, +Exprob,-Class)) .

type (selected (example, exprob,class)) .

classes ([turn_to,switch_on,switch_off,calibrate,take_image]) .

% The domain predicates

rmode (candidate_turn_to (+Example, +Exprob, +-A,+-B, +-C)) .

type (candidate_turn_to (example, exprob, satellite,direction,
direction)).

rmode (candidate_switch_on (+Example, +Exprob, +-A, +-B)) .
type (candidate_switch_on (example, exprob, instrument, satellite)) .

rmode (candidate_switch_off (+Example, +Exprob, +-A, +-B)) .
type (candidate_switch_off (example, exprob, instrument, satellite)).

rmode (candidate_calibrate (+Example, +Exprob, +-A, +-B,+-C) ) .
type (candidate_calibrate (example, exprob, satellite,
instrument,direction)) .

rmode (candidate_take_image (+Example, +Exprob, +-A, +-B, +-C, +-D)) .
type (candidate_take_image (example, exprob, satellite,direction,
instrument,mode)) .

rmode (target_goal_pointing (+Example, +Exprob, +-A, +-B)) .
type (target_goal_pointing(example, exprob,satellite,direction)).

rmode (target_goal_have_image (+Example, +Exprob, +-A, +-B)) .
type (target_goal_have_image (example, exprob,direction, mode)) .

rmode (static_fact_on_board (+Exprob, +-A,+-B)) .
type (static_fact_on_board(exprob, instrument, satellite)) .

rmode (static_fact_supports (+Exprob, +-A,+-B)) .
type (static_fact_supports (exprob, instrument, mode)) .

rmode (static_fact_calibration_target (+Exprob, +-A,+-B)) .
type (static_fact_calibration_target (exprob, instrument,direction)) .

Figure 1: Language bias for the satellite domain automati-
cally generated from the PDDL domain definition.

e The learning examples. They are described by the set
of examples of the target concept, and the background
knowledge associated to these examples. As previ-
ously explained, the background knowledge describes the
helpful-context of the action selection. Figure 2 shows
one learning example with id tr01_el resulted from a
selection of the action switch-on and its associated
background knowledge for building the actions tree for
the satellite domain.

The resulting relational decision tree represents a set of
disjoint patterns of action selection that can be used to pro-



% Example tr0l_el % The target concept
selected(tr0l_el, tr0l_prob, switch_on) . predict (turn_to (+Example, +Exprob, +Sat, +Dirl, +Dir2, -Class)) .
candidate_turn_to(tr0l_el,tr0l_prob,satellite0,phenomenon2,star0) . type (turn_to (example, exprob, satellite,direction,direction, class)) .
candidate_turn_to(tr0l_el,tr0l_prob,satellite0,phenomenon3, star0) . classes ([selected, rejected]) .
candidate_turn_to(tr0l_el,tr0l_prob,satellite0, phenomenon4, star0) . % The useful-context predicates, the same as in the Actions tree
candidate_switch_on(tr0l_el,tr0l_prob, instrument0,satellite0).
target_goal_have_image (tr0l_el, tr0l_prob, phenomenon3, infrared2) .
target_goal_have_image (tr0l_el, tr0l_prob, phenomenond, infrared2) .
target_goal_have_image (tr0l_el, tr0l_prob, phenomenon2, spectrographl) . . . . . . .
Figure 4: Part of the language bias for learning the bindings
tree for the turn_to action from the satellite domain.
Figure 2: Knowledge base corresponding to the ex-
ample trOl_el obtained solving the training problem

tr01_prob from the satellite domain. with id tr07_e63, resulted in the selection of the action

turn_to(satellite0,groundstationO,planetd).

% static predicates
static_fact_calibration_target (tr07_prob, instrument0,groundstation0) .
static_fact_supports (tr07_prob, instrument0, thermograph2) .
static_fact_on_board(tr07_prob, instrument0, satelliteO) .

vide advice to the planner: the internal nodes of the tree
contain the set of conditions under which the decision can
be made. The leaf nodes contain the corresponding class;
in this case, the decision to be made and the number of ex- % Example tr07_E63

. . turn_to(tr07_e63,tr07_prob,satellitel, groundstation0,planet4, selected).
ampleS COVCI‘ed by the Pattefn. Flgure 3 ShOWS the actions turn_to(tr07_e63,tr07_prob,satellitel, phenomenon2, planet4, rejected) .
tree learned fOr the Satellite dOmaiIl. Regarding thlS tree’ the turn_to(tr07_e63,tr07_prob,satellite0, phenomenon3,planetd, rejected) .
first branch states that when there is a calibrate action

candidate_turn_to(tr07_e63,tr07_prob,satellitel,groundstation0,planetd) .

candidate_turn_to(tr07_e63,tr07_prob,satellitel,phenomenon2,planetd) .
il’l the Set Of helpful/candidate actions lt was COITeCﬂy se- candidate_turn_to(tr07_e63,tr07_prob,satellitel,phenomenon3,planetd) .
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lected in 44 over 44 times, independently of the rest of help-
ful/candidate actions. The second branch says that if there is
no calibrate candidate but there is a take_image one,
the planner has finally chosen correctly to take_image in
110 over 110 times and so on for all the tree branches.

selected (-A,-B,-C)
candidate_calibrate(A,B,-D,-E,-F) ?
+--yes: [calibrate] 44.0 [[turn_to:0.0,switch_on:0.0
| switch_off:0.0,calibrate:44.0,
| take_image:0.0]]
+--no: candidate_take_image (A,B,-G,-H,-I,-J) ?
+--yes: [take_image] 110.0 [[turn_to:0.0,switch_on:0.0,
| switch_off:0.0,calibrate:0.0,
| take_image:110.0]]
+--no: candidate_switch_on(A,B,-K,-L) ?
+--yes: [switch_on] 59.0 [[turn_to:15.0,switch_on:44.0,

| switch_off:0.0,calibrate:0.0,

| take_image:0.0]]

+--no: [turn_to] 149.0 [[turn_to:149.0,switch_on:0.0,
switch_off:0.0,calibrate:0.0,
take_image:0.0]]

Figure 3: Relational decision tree learned for the action se-
lection in the satellite domain.

Learning the Bindings Tree

At this step, a relational decision tree is built for each ac-
tion in the planning domain. These trees, called bindings
trees, indicate the bindings to select for the action in the dif-
ferent planning contexts. The language bias for learning a
bindings tree is also automatically extracted from the PDDL
domain definition. But in this case, the target concept rep-
resents the action of the planning domain and its arguments,
plus an extra argument indicating whether the set of bind-
ings was selected or rejected by the planner in a given con-
text; Figure 4 shows part of the language bias specified for
learning the bindings tree for the action turn_to from the
satellite domain.

The learning examples for learning a bindings tree consist
of examples of the target concept, and their associated back-
ground knowledge. Figure 5 shows a piece of the knowledge
base for building the bindings tree corresponding to the
action turn_to from the satellite domain. This example,

targetfgoalfhavefimaqe?tr077e63,tr077prob,phenomenon2,thermograph2).
target_goal_have_image (tr07_e63,tr07_prob, phenomenon3, thermograph2) .
target_goal_have_image (tr07_e63,tr07_prob, planet4d, spectrograph0) .

Figure 5: Knowledge base corresponding to the ex-
ample tr07_e63 obtained solving the training problem
tr07_prob from the satellite domain.

Figure 6 shows a bindings tree built for the action
turn-to from the satellite domain. According to this tree,
the first branch says that when there is a sibling node that
is a turn—-to of a satellite C' from a location E to a loca-
tion D with the goal of goal_pointing D, another goal
is having an image of F and we have to calibrate C' in F,
the turn-to has been selected by the planner in 12 over
12 times.
turn_to(-A,-B,-C,-D,-E, -F)
candidate_turn_to(A,B,C,D,E),target_goal_pointing(A,B,C,D)?
+-yes:target_goal_have_image (A,B,E,-G)?
| +--yes: static_fact_calibration_target (B,-H,D)?
| | +--yes: [selected] 12.0 [[selected:12.0,rejected:0.0]]
| | +--no: [rejected] 8.0 [[selected:0.0,rejected:8.0]]
| +--no: [rejected] 40.0 [[selected:0.0,rejected:40.0]]
+-no: candidate_turn_to(A,B,C,D,E),target_goal_have_image(A,B,E,-I)?

+--yes: target_goal_have_image(A,B,D,-J) ?
| +--yes:[rejected] 48.0 [[selected:0.0,rejected:48.0]]

| +--no: [selected] 18.0 [[selected:18.0,rejected:0.0]]
+--no: [selected] 222.0 [[selected:220.0,rejected:2.0]]

Figure 6: Relational decision tree learned for the bindings
selection of the turn_to action from the satellite domain.

Planning with Decision Trees

In this section we explain how we use the learned decision
trees directly as general action policies (the H-Context Pol-
icy algorithm) or as control knowledge for a heuristic plan-
ner (the sorted EHC algorithm).

H-Context General Policy

The helpful context-action policy is applied forward from the
initial state as described in the pseudo-code of Figure 7. The
algorithm goes as follows. For each state to be expanded, its



helpful actions and target goals are computed. Then, the ac-
tion decision tree determines which action should be applied
using the current helpful context. The leaf of the decision
tree returns action-list, a list of actions sorted by the number
of examples matching the leaf during the training phase (see
Figure 3). From this list we keep only actions that have at
least one matching example. With the first action in action-
list, we give its ground applicable actions to the correspond-
ing bindings tree. The leaf of the binding tree returns the
number of times that the decision was selected or rejected in
the training phase.

Depth-First H-Context Policy (I, G, T): plan

I: initial state
G: goals
T': (Policy) Decision Trees

open-list = () ; delayed-list = () ;s = I
while open-list # () and delayed-list # ()
and not solved(s, G) do
if s not in path(/, s) then
S’ = helpful-successors(s); candidates= )
action-list = solve-op-tree(s, T")
for each action in action-list
C" = nodes-of-operator(S’,action);
for each ¢’ in C’
ratio(c’) = solve-binding-tree(c’, T)
candidates = candidates U sort(C” ratio(c¢’))
open-list = candidates U open-list
for each action not in action-list
C" = nodes-of-operator(S’,action)
delayed-list= C' U delayed-list
if open-list # () then
s = pop(open-list)
else
s = pop(delayed-list)
if solved(s, (G) then
return path(7, s)

Figure 7: A depth-first algorithm with a sorting strategy
given by the helpful-context policy.

We use the selection ratio, selected/(selected + rejected),
to sort the ground actions. Then, they are inserted in can-
didates list. We repeat the ground action sorting for each
action in action-list and finally candidates list is placed at
the beginning of open-list. As a result we apply a depth-
first strategy in which a backtrack-free search is the exact
policy execution. We keep track of the repeated states, so
if the policy leads to a visited state the algorithm discards
that node and takes the next one in the open-list. Ground ac-
tions whose action does not appear in action-list are placed
in delayed-list. Nodes in delayed-list are used only if open-
list becomes empty, to make the search complete in the help-
ful action search tree.

The main benefit of this algorithm is that it can handle the

search process regardless of the robustness of the policy. A
perfect policy will be directly applied. But an inaccurate one
will be applied, recovering with backtracking when needed.
States in the path are evaluated with the heuristic function
just for computing the helpful context, but the heuristic val-
ues are not used.

Search Control Knowledge

We also have used learned decision trees as control knowl-
edge for the heuristic search algorithm. We use them as a
node ordering technique for guiding EHC. Given that EHC
skips siblings evaluation once it finds a node that improves
the heuristic value of its parent, evaluating the successor
nodes in the right order (better to worse) can save a lot of
computation. At any state in the search tree, we compute the
helpful context, and then sort its successors (candidate ac-
tions) using the order by which they appear in the decision
tree leaf that matches the current context. Ground actions
of the same action are also sorted, evaluating them in the
order given by their selected/rejected ratio obtained in the
bindings tree match.

Experimental Results

We tested the two algorithms on seven IPC domains clas-
sified as different in the topology induced by the heuris-
tic function (Hoffmann 2005). These domains are the
Blocksworld, Miconic and Logistics from the IPC-2 set,
Zenotravel from IPC-3, Satellite from IPC-4 and Rovers and
TPP from IPC-5. For each domain we generated 30 random
problems as training set using the IPC random problem gen-
erators. The training problems were solved with EHC, re-
fined with DfBnB, and then the solutions obtained for each
problem were compiled into learning examples, as explained
in the Generation of Learning Examples section. From these
examples ROLLER builds the corresponding decision trees
with the TILDE system. The resulting trees are loaded in
memory. Finally ROLLER attempts to solve each test prob-
lem of the corresponding STRIPS IPC problem set with a
time bound of 1800 seconds.

Training

In order to evaluate the efficiency of our training process we
measured the time needed for solving the training problems,
the number of learning examples generated in this process
and the time spent by TILDE for learning the decision trees.
Table 1 shows the results obtained for each domain.

Table 1: Experimental Results of the training process.

Domain Training Learning | Learning

Time | Examples Time
BlocksWorld 21.30 250 6.05
Miconic 50.83 4101 21.94
Logistics 268.67 965 11.58
Zenotravel 530.13 1734 212.53
Satellite 13.18 2766 40.14
Rovers 850.68 384 21.71
TPP 277.48 644 5.29




ROLLER achieves shorter learning times than the state-
of-the-art systems for learning general policies (Martin &
Geffner 2004; Yoon, Fern, & Givan 2007). Particularly,
while these systems implement ad-hoc learning algorithms
that often need hours to obtain good policies, our approach
only needs seconds to learn the decision trees for a given
domain. This feature makes our approach more suitable for
architectures that need on-line planning and learning pro-
cesses. However, these learning times are not constant in
the different domains because they depend on the number
of learning examples (in our work this number is given by
the amount of different solutions for the training problems)
and on the size of the learning examples (in our work this
size is given by the number of predicates and actions in the
planning domain and their arity).

Testing

To evaluate the correctness of the learning process, we used
the resulting decision trees first, as a general action pol-
icy and second, as a search control ordering technique for
EHC. We compared the performance of both approaches
with EHC. These three configurations are named as follows:

o EHC: an EHC implementation with the FF’s heuristic and
the helpful actions as a pruning technique (Hoffmann &
Nebel 2001). This configuration serves as a baseline for
comparison as used in (De la Rosa, Garcia-Olaya, & Bor-
rajo 2007).

o H-Context Policy: directly using the learned decision
trees with the Depth-first H-Context Policy algorithm.

e Sorted-EHC: sorting-based EHC that sorts node succes-
sors based on the order suggested by the decision trees.

The evaluation of the learned decision trees is performed
both in terms of problems solved and quality of the solu-
tions found. Table 2 shows the number of problems solved
for each of the three planning configurations in all the do-
mains. Table 3 shows the average values of computation
time (in seconds), plan length and evaluated nodes, only in
the problems solved by the three configurations. Note that
for the blocksworld domain we used the problems from the
track 2 of IPC2 which was a harder test set not even tried by
many competitors.

Table 2: Problems solved by the three configurations.

Domain (problems) | EHC [ H-Context Policy | Sorted-EHC

Blocksworld (103) 20 103 21
Miconic (150) 150 150 150
Logistics (79) 72 79 73
Zenotravel (20) 19 20 19
Satellite (36) 23 28 26
Rovers (40) 31 40 33
TPP (30) 19 30 19

Regarding the experimental results displayed in Table 2
the planning configuration based on the direct application
of the learned decision trees as a general policy solves all

the IPC problems in all domains except in one, the Satellite
domain. Though the policy learned in this domain is effec-
tive, the last 8 problems have a very large size (from 100 to
200 goals) so the computation of the helpful actions along
the solution path is too expensive for a time bound of 1800
seconds. On the other hand, the ordering of node evaluation
in EHC solves only a few more problems than the standard
EHC. The reason is that this technique still relies on the ac-
curacy of the heuristic function, so where the heuristic is
uninformed, evaluation of useless nodes still happens like in
the standard EHC.

In terms of plan length table 3 shows that the direct ap-
plication of the learned policy has two different types of be-
havior. On one hand, in domains with resource management
such as logistics or zenotravel, the quality of the plans found
by these configuration got worse. In these domains our defi-
nition of helpful context is not enough to always capture the
best action to make because the arguments of the best ac-
tion do not always correspond to the goals of the problem
or the static predicates. On the other hand, in domains with
no resource selections, like the blocksworld or miconic, the
direct application of the general policy improves the qual-
ity performance of the baseline EHC algorithm. Otherwise,
the sorted-EHC configuration keeps good quality values in
all the domains because the deficiencies of the policy in do-
mains with resources are corrected by the heuristic function.

In terms of computation time, the H-Context Policy con-
figuration scales much better than the standard EHC algo-
rithm. Figures 8, 9 and 10 show, in a logarithmic scale, the
evolution of the accumulated time used to solve the prob-
lems in the Miconic, Logistics and Rovers domain respec-
tively. In these graphs we can also see that the simple EHC
algorithms achieve better time values when solving prob-
lems that require computation times lower that one second.
This is because the use of the learned tree for planning in-
volves a fixed time cost for matching helpful contexts, and
this process is not performed by the standard EHC. We omit-
ted graphs in the rest of domains because the behavior is
similar to the three ones taken as example.

In the BlocksWorld domain heuristic planners scale
poorly because there is a strong interaction among the goals
that current heuristics are unable to capture. Particularly in
this domain achieving a goal separately may undo others
therefore, it is crucial to achieve the goals in a particular
order. The actions trees learned by our approach give a total
order of the domain actions in the different contexts captur-
ing this information. This fact makes our approach achieve
impressive scalability results producing good quality solu-
tion plans.

Related Work

Our approach is strongly inspired by the way
Prodigy (Veloso et al. 1995) models the search con-
trol knowledge. In the Prodigy architecture, the action
selection is a two-step process: first, the best uninstantiated
operator/action to apply is selected, and, second, the
bindings for the operators are selected. Control knowledge
could be specified or learned (Leckie & Zukerman 1998;
Minton 1990) for guiding both selections. =~ We have



Table 3: Average values of the planning time, plan length and evaluated nodes in the problems solved by all the configurations.

Domain EHC H-Context Policy Sorted-EHC
Time [ Quality | Evaluated | Time [ Quality [ Evaluated Time [ Quality | Evaluated
Blocksworld 50.29 41.16 4401.50 0.48 34.66 37.83 30.20 47.3 4293.83
Miconic 7.21 69.49 341.10 1.62 51.37 52.37 7.35 55.78 157.97
Logistics | 172.23 | 110.00 1117.84 | 18.63 | 131.30 132.25 | 183.50 | 108.48 1140.05
Zenotravel | 82.26 32.31 407.26 7.06 55.68 56.68 | 115.51 33.67 554.21
Satellite | 48.69 42.60 398.47 | 3.66 43.95 4491 9.58 42 112
Rovers 70.28 51.32 691.25 4.96 52.29 53.38 45.14 50.93 447.87
TPP | 108.08 62.45 2631.77 1.88 46.00 46.86 | 104.09 62.68 2649.40
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Figure 8: Accumulated time in the Miconic domain.

translated this idea of the two-step action selection into
the heuristic planning paradigm, because it allows us to
define the process of learning planning control knowledge
as a standard classification process. Nevertheless, unlike
Prodigy, our approach does not distinguish among different
node classes in the search tree.

Relational decision trees have been previously used to
learn action policies for the relational reinforcement learn-
ing task (Dzeroski, De Raedt, & Blockeel ). In comparison
to our work, this approach presented two limitations. First,
the learning is targeted to a given set of goals, therefore they
do not directly generalize the learned knowledge for differ-
ent goals within a given domain. And, second, since they use
an explicit representation of the states to build the learning
examples they need to add extra background knowledge to
learn effective policies in domains with recursive predicates
such as the blocksworld.

Recent work on learning general policies (Martin &
Geffner 2004; Yoon, Fern, & Givan 2007) overcome these
two problems by introducing the planning goals to the back-
ground knowledge of the learning examples and changing
the representation language for the examples from predi-
cate logic to concept language. Our approach is an alter-
native to these works, because learning the action to choose
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Figure 9: Accumulated time in the Logistics domain.

among the Helpful actions allows us to obtain effective gen-
eral policies without changing the representation language.
As a consequence, we can directly use off-the-shelf rela-
tional classifiers that work in predicate logic so the resulting
policies are easy readable and the learning times are shorter.

Conclusions and Future Work

We have presented a technique for reducing the number
of node evaluations in heuristic planning based on learn-
ing Helpful context-action policies with relational decision
trees. Our technique defines the process of learning general
policies as a two-step classification task and builds domain-
specific relational decision trees that capture the action to
select in the different planning contexts. We have explained
how to use the learned trees to solve classical planning prob-
lems, applying them directly as a policy or as search control
for ordering the node evaluation in EHC.

This work contributes the state-of-the-art of learning
based planning in three ways:

1. Representation. We propose a new representation for
learning general policies that encodes in predicate logic
the meta-state of the search. As oppose to previous works
based on learning in predicate logic (Khardon 1999), our
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Figure 10: Accumulated time in the Rovers domain.

representation does not need extra background to learn ef-
ficient policies for domains with recursive predicates such
as the blocksworld. Besides, since our policies are ex-
tracted from the relations of the domain actions, the re-
sulting learned trees provide useful hierarchical informa-
tion of the domain that could be used in hierarchical plan-
ning systems (the actions tree gives us a total order of the
actions according to the different planning contexts).

2. Learning. We have defined the task of acquiring plan-
ning control knowledge as a standard classification task.
Thus, we can use an off-the-shelf classifier for learning
the helpful context-action policy. Results in the paper are
obtained learning relational decision trees with the TILDE
tool, but we could have used any other relational classi-
fier. Because of this fact, advances in the field of rela-
tional learning can be directly applied to learn faster and
better control knowledge for planning.

3. Planning. We introduced two methods for using policies
to reduce the node evaluation: (1) the novel algorithm
Depth-First H-Context Policy that allows a direct appli-
cation of the H-Context policies and (2) the sorted EHC,
an algorithm that allows the use of a general policy with
greedy heuristic search algorithms traditionally effective
in heuristic planning such as EHC.

The experimental results showed that our approach im-
proved the scalability of the baseline heuristic planning algo-
rithm EHC over a variety of IPC domains. In terms of qual-
ity, our approach generates worse solutions than the baseline
in domains with resources management like the Zenotravel
or Logistics. In these domains our definition of the help-
ful context is not enough to always capture the best action
to apply because the arguments of the best action do not
always correspond to the problem goals or the static pred-
icates. We plan to refine the definition of the helpful context
to achieve good quality plans in such domains too. We also
want to test the integration of the learned trees with other

search algorithms suitable for policies such as Limited Dis-
crepancy Search. Furthermore, given that the learning of
decision trees is robust to noise, we want to apply this same
approach to probabilistic planning problems. Finally, for the
time being we are providing the learner with a fixed distri-
bution of learning examples. In the near future, we plan to
explore how to generate the most convenient distribution of
learning examples according to a target planning task.
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